Advertisement

Minimising Communication in Honest-Majority MPC by Batchwise Multiplication Verification

  • Peter Sebastian Nordholt
  • Meilof Veeningen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)

Abstract

In this paper, we present two new and very communication-efficient protocols for maliciously secure multi-party computation over fields in the honest-majority setting with abort. Our first protocol improves a recent protocol by Lindell and Nof. Using the so far overlooked tool of batchwise multiplication verification, we speed up their technique for checking correctness of multiplications (with some other improvements), reducing communication by \(2{\times }\) to \(7{\times }\). In particular, in the 3PC setting, each party sends only two field elements per multiplication. We also show how to achieve fairness, which Lindell and Nof left as an open problem. Our second protocol again applies batchwise multiplication verification, this time to perform 3PC by letting two parties perform the SPDZ protocol using triples generated by a third party and verified batchwise. In this protocol, each party sends only \(\frac{4}{3}\) field elements during the online phase and \(\frac{5}{3}\) field elements during the preprocessing phase.

Notes

Acknowledgements

We thank the anonymous reviewers for their useful suggestions. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement #731583 (SODA).

References

  1. 1.
    Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of CCS 2016. ACM (2016)Google Scholar
  2. 2.
    Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_39CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: Security and composition of multi-party cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: Proceedings of NSDI (2017)Google Scholar
  5. 5.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40203-6_1CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_32CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or: efficient MPC over arbitrary rings. Cryptology ePrint Archive, Report 2017/908 (2017). http://eprint.iacr.org/2017/908
  8. 8.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_38CrossRefGoogle Scholar
  9. 9.
    Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional Byzantine agreement and multi-party computation secure against dishonest minorities from scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–501. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_32CrossRefGoogle Scholar
  11. 11.
    Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_8CrossRefGoogle Scholar
  12. 12.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold cryptography. In: Proceedings of PODC (1998)Google Scholar
  13. 13.
    Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure computation. In: Proceedings of CCSW 2014 (2014)Google Scholar
  14. 14.
    Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. Cryptology ePrint Archive, Report 2017/1230 (2017). https://eprint.iacr.org/2017/1230
  15. 15.
    Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security under composition. In: Proceedings of STOC 2006 (2006)Google Scholar
  16. 16.
    Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Proceedings of CCS 2017. ACM (2017)Google Scholar
  17. 17.
    Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39212-2_56CrossRefzbMATHGoogle Scholar
  18. 18.
    Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: Proceedings of S&P (2017)Google Scholar
  19. 19.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: Proceedings of S&P (2013)Google Scholar
  20. 20.
    Schoenmakers, B., Veeningen, M., de Vreede, N.: Trinocchio: privacy-preserving outsourcing by distributed verifiable computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 346–366. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_19CrossRefGoogle Scholar
  21. 21.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979).  https://doi.org/10.1007/3-540-09519-5_73CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Alexandra InstituteCopenhagenDenmark
  2. 2.Philips ResearchEindhovenThe Netherlands

Personalised recommendations