Advertisement

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent

  • Marc Fischlin
  • Patrick Harasser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)

Abstract

Sanitizable signature schemes are signature schemes which support the delegation of modification rights. The signer can allow a sanitizer to perform a set of admissible operations on the original message and then to update the signature, in such a way that basic security properties like unforgeability or accountability are preserved. Recently, Camenisch et al. (PKC 2017) devised new schemes with the previously unattained invisibility property. This property says that the set of admissible operations for the sanitizer remains hidden from outsiders. Subsequently, Beck et al. (ACISP 2017) gave an even stronger version of this notion and constructions achieving it. Here we characterize the invisibility property in both forms by showing that invisible sanitizable signatures are equivalent to \(\mathsf {IND{-}}\mathsf {CPA}\)-secure encryption schemes, and strongly invisible signatures are equivalent to \(\mathsf {IND{-}}\mathsf {CCA2}\)-secure encryption schemes. The equivalence is established by proving that invisible (resp. strongly invisible) sanitizable signature schemes yield \(\mathsf {IND{-}}\mathsf {CPA}\)-secure (resp. \(\mathsf {IND{-}}\mathsf {CCA2}\)-secure) public-key encryption schemes and that, vice versa, we can build (strongly) invisible sanitizable signatures given a corresponding public-key encryption scheme.

Keywords

Sanitizable signatures Digital signatures Invisibility Public-key encryption One-way functions 

Notes

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions. This work has been co-funded by the DFG as part of project P2 within the CRC 1119 CROSSING.

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_1CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: De Capitani di Vimercati, S., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005).  https://doi.org/10.1007/11555827_10CrossRefGoogle Scholar
  3. 3.
    Beck, M.T., Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Practical strongly invisible and strongly accountable sanitizable signatures. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 437–452. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60055-0_23CrossRefzbMATHGoogle Scholar
  4. 4.
    Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13708-2_6CrossRefGoogle Scholar
  5. 5.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_18CrossRefGoogle Scholar
  6. 6.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Santizable signatures: how to partially delegate control for authenticated data. In: BIOSIG 2009, pp. 117–128 (2009)Google Scholar
  7. 7.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_26CrossRefGoogle Scholar
  8. 8.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40012-4_12CrossRefzbMATHGoogle Scholar
  9. 9.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-53997-8_2CrossRefzbMATHGoogle Scholar
  10. 10.
    Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 152–182. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_6CrossRefGoogle Scholar
  11. 11.
    Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11925-5_13CrossRefGoogle Scholar
  12. 12.
    Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31410-0_3CrossRefGoogle Scholar
  13. 13.
    Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68914-0_16CrossRefzbMATHGoogle Scholar
  14. 14.
    Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_22CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing information flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_21CrossRefzbMATHGoogle Scholar
  16. 16.
    de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova, N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04897-0_8CrossRefGoogle Scholar
  17. 17.
    Demirel, D., Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D., Traverso, G.: Overview of functional and malleable signature schemes (PRISMACLOUD deliverable d4.4). Technical report (2015)Google Scholar
  18. 18.
    Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 3–19. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30840-1_1CrossRefzbMATHGoogle Scholar
  19. 19.
    Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_25CrossRefGoogle Scholar
  20. 20.
    Fehr, V., Fischlin, M.: Sanitizable signcryption: sanitization over encrypted data (full version). Cryptology ePrint Archive, Report 2015/765 (2015). http://eprint.iacr.org/2015/765
  21. 21.
    Fischlin, M., Harasser, P.: Invisible sanitizable signatures and public-key encryption are equivalent. Cryptology ePrint Archive, Report 2018/337 (2018). https://eprint.iacr.org/2018/337
  22. 22.
    Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D., Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_12CrossRefGoogle Scholar
  23. 23.
    Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable zero-knowledge order queries for network data. Cryptology ePrint Archive, Report 2015/283 (2015). http://eprint.iacr.org/2015/283
  24. 24.
    Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28166-7_8CrossRefzbMATHGoogle Scholar
  25. 25.
    Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21518-6_21CrossRefGoogle Scholar
  26. 26.
    Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new approach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_39CrossRefGoogle Scholar
  27. 27.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st ACM STOC, pp. 44–61 (1989)Google Scholar
  28. 28.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_17CrossRefGoogle Scholar
  29. 29.
    Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006).  https://doi.org/10.1007/11927587_28CrossRefGoogle Scholar
  30. 30.
    Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures. In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS, vol. 9481, pp. 100–117. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29883-2_7CrossRefGoogle Scholar
  31. 31.
    Matsuda, T., Hanaoka, G.: An asymptotically optimal method for converting bit encryption to multi-bit encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 415–442. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_18CrossRefGoogle Scholar
  32. 32.
    Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607–616 (2009)Google Scholar
  33. 33.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43 (1989)Google Scholar
  34. 34.
    Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature — performance, mixing properties, and revisiting the property of transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21554-4_10CrossRefGoogle Scholar
  35. 35.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC, pp. 387–394 (1990)Google Scholar
  36. 36.
    Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13708-2_4CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CryptoplexityTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations