Advertisement

On the Security Notions for Homomorphic Signatures

  • Dario Catalano
  • Dario Fiore
  • Luca Nizzardo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)

Abstract

Homomorphic signature schemes allow anyone to perform computation on signed data in such a way that the correctness of computation’s results is publicly certified. In this work we analyze the security notions for this powerful primitive considered in previous work, with a special focus on adaptive security. Motivated by the complications of existing security models in the adaptive setting, we consider a simpler and (at the same time) stronger security definition inspired to that proposed by Gennaro and Wichs (ASIACRYPT’13) for homomorphic MACs. In addition to strength and simplicity, this definition has the advantage to enable the adoption of homomorphic signatures in dynamic data outsourcing scenarios, such as delegation of computation on data streams. Then, since no existing homomorphic signature satisfies this stronger notion, our main technical contribution are general compilers which turn a homomorphic signature scheme secure under a weak definition into one secure under the new stronger notion. Our compilers are totally generic with respect to the underlying scheme. Moreover, they preserve three important properties of homomorphic signatures: composability, context-hiding (i.e. signatures on computation’s output do not reveal information about the input) and efficient verification (i.e. verifying a signature against a program \({\mathcal P}\) can be made faster, in an amortized, asymptotic sense, than recomputing \({\mathcal P}\) from scratch).

Notes

Acknowledgements

The work of Dario Fiore and Luca Nizzardo was partially supported by the Spanish Ministry of Economy under project references TIN2015-70713-R (DEDETIS), RTC-2016-4930-7 (DataMantium), and under a Juan de la Cierva fellowship to Dario Fiore, and by the Madrid Regional Government under project N-Greens (ref. S2013/ICE-2731).

References

  1. 1.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01957-9_18CrossRefGoogle Scholar
  2. 2.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_1CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_2CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_23CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_24CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_5CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_10CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_1CrossRefGoogle Scholar
  9. 9.
    Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_21CrossRefGoogle Scholar
  10. 10.
    Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_31CrossRefGoogle Scholar
  11. 11.
    Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 680–699. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_38CrossRefGoogle Scholar
  12. 12.
    Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homomorphic signatures. Full Version: Cryptology ePrint Archive. https://eprint.iacr.org/2016/1175.pdf
  13. 13.
    Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_13CrossRefGoogle Scholar
  14. 14.
    Catalano, D., Fiore, D., Nizzardo, L.: Homomorphic signatures with sublinear public keys via asymmetric programmable hash functions. Des. Codes Cryptogr. (2017).  https://doi.org/10.1007/s10623-017-0444-3
  15. 15.
    Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_13CrossRefGoogle Scholar
  16. 16.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_40CrossRefGoogle Scholar
  17. 17.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_21CrossRefGoogle Scholar
  18. 18.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: new definitions and delegatable anonymous credentials. In: 2014 IEEE 27th Computer Security Foundations Symposium, pp. 199–213. IEEE (2014)Google Scholar
  19. 19.
    Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW (1993)Google Scholar
  20. 20.
    Elkhiyaoui, K., Önen, M., Molva, R.: Online-offline homomorphic signatures for polynomial functions. Cryptology ePrint Archive, Report 2015/954 (2015). http://eprint.iacr.org/
  21. 21.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_41CrossRefGoogle Scholar
  22. 22.
    Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_9CrossRefGoogle Scholar
  23. 23.
    Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_16CrossRefGoogle Scholar
  24. 24.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: 47th ACM STOC. ACM Press (2015)Google Scholar
  26. 26.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_17CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly
  2. 2.IMDEA Software InstituteMadridSpain

Personalised recommendations