Skip to main content

Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments

  • Chapter
  • First Online:
Book cover Genomic Designing of Climate-Smart Cereal Crops

Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus americanus (L.) Morrone] is the sixth most important cereal in the world. Today, pearl millet is grown on more than 30 million ha mainly in West and Central Africa and the Indian sub-continent as a staple food for more than 90 million people in agriculturally marginal areas. It is rich in proteins and minerals and has numerous health benefits such as being gluten-free and having slow-digesting starch. It is grown as a forage crop in temperate areas. It is drought and heat tolerant, and a climate-smart crop that can withstand unpredictable variability in climate. However, research on pearl millet improvement is lagging behind other major cereals mainly due to limited investment in terms of man and money power. So far breeding achievements include the development of cytoplasmic male sterility (CMS), maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for hybrid breeding, dwarfing genes for reduced height, improved input responsiveness, photoperiod neutrality for short growing season, and resistance to important diseases. Further improvement of pearl millet for genetic yield potential, stress tolerance, and nutritional quality traits would enhance food and nutrition security for people living in agriculturally dissolute environments. Application of molecular technology in the pearl millet breeding program has a promise in enhancing the selection efficiency while shortening the lengthy phenotypic selection process ultimately improving the rate of genetic gains. Linkage analysis and genome-wide association studies based on different marker systems in detecting quantitative trait loci (QTLs) for important agronomic traits are well demonstrated. Genetic resources including wild relatives have been categorized into primary, secondary and tertiary gene pools based on the level of genetic barriers and ease of gene introgression into pearl millet. A draft on pearl millet whole genome sequence was recently published with an estimated 38,579 genes annotated to establish genomic-assisted breeding. Resequencing a large number of germplasm lines and several population genomic studies provided a valuable insight into population structure, genetic diversity and domestication history of the crop. Successful improvement in combination with modern genomic/genetic resources, tools and technologies and adoption of pearl millet will not only improve the resilience of global food system through on-farm diversification but also dietary intake which depends on diminishingly fewer crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagarswamy G, Bidinger FR (1987) Genotypic variation in biomass production and nitrogen use efficiency in pearl millet [Pennisetum americanum (L.) Leeke]. In: Gabelman WH, Loughman BC (eds) Genetic aspects of plant mineral nutrition: proceedings of the second international symposium on genetic aspects of plant mineral nutrition, University of Wisconsin, Madison, June 16–20, 1985. Springer Netherlands, Dordrecht, pp 281–286

    Google Scholar 

  • Ali GM, Murtaza N, Collins JC, McNeilly T (2006) Study of salt tolerance parameters in pearl millet Pennisetum americanum. J Cent Eur Agri 7:365–376

    Google Scholar 

  • Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205

    Article  CAS  Google Scholar 

  • Amadou I, Gounga ME, Le GW (2013) Millets: nutritional composition, some health benefits and processing—a review. Emir J Food Agri 25:501–508. https://doi.org/10.9755/ejfa.v25i7.12045

    Article  Google Scholar 

  • Ambawat S, Senthilvel S, Hash CT, Nepolean T, Rajaram V, Eshwar K, Sharma R, Thakur RP, Rao VP, Yadav RC, Srivastava RK (2016) QTL mapping of pearl millet rust resistance using an integrated DArT- and SSR-based linkage map. Euphytica 209:461–476

    Article  Google Scholar 

  • Andrew RL, Wallis IR, Harwood CE, Foley WJ (2010) Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa. Ann Bot 105:707–717

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews D, Kumar KA (1996) Use of the west African pearl millet iniadi in cultivar development. Plant Genet Resour Newsl 105:15–22

    Google Scholar 

  • Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appa Rao S, Mengesha MH, Reddy CR (1986) New sources of dwarfing genes in pearl millet (Pennisetum americanum). Theor Appl Genet 73:170–174

    Article  CAS  PubMed  Google Scholar 

  • Azhaguvel P, Hash CT, Rangasamy P, Sharma A (2003) Mapping the d1 and d2 dwarfing genes and the purple foliage color locus P in pearl millet. J Hered 94:155–159

    Article  CAS  PubMed  Google Scholar 

  • Bailey AV, Piccolo B, Sumrell G, Burton GW (1979) Amino acid profiles, chemical scores, and mineral contents of some pearl millet inbred lines. J Agri Food Chem 27:1421–1423

    Article  CAS  Google Scholar 

  • Bashir EMA, Ali AM, Ali AM, Mohamed ETI, Melchinger AE, Parzies HK, Haussmann BIG (2015) Genetic diversity of Sudanese pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by SSR markers, and relationship between genetic and agro-morphological diversity. Genet Resour Crop Evol 62:579–591

    Article  Google Scholar 

  • Bationo A, Christianson CB, Klaij MC (1993) The effect of crop residue and fertilizer use on pearl millet yields in Niger. Fertil Res 34:251–258

    Article  CAS  Google Scholar 

  • Bennett PM (2004) Genome plasticity. In: Woodford N, Johnson AP (eds) Genomics, proteomics, and clinical bacteriology: methods and reviews. Humana Press, Totowa, NJ, pp 71–113

    Chapter  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C-Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Google Scholar 

  • Berg A, de Noblet-Ducoudré N, Sultan B, Lengaigne M, Guimberteau M (2013) Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agri For Meteorol 170:89–102

    Article  Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet-a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee R, Bramel P, Hash C, Kolesnikova-Allen M, Khairwal I (2002) Assessment of genetic diversity within and between pearl millet landraces. Theor Appl Genet 105:666–673

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee R, Khairwal IS, Bramel P, Reddy KN (2007) Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155:35–45

    Article  Google Scholar 

  • Bidinger FR, Raju DS (1990) Effects of the d2 dwarfing gene in pearl millet. Theor Appl Genet 79:521–524

    Article  CAS  PubMed  Google Scholar 

  • Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Sci 47:969–980

    Article  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:1–18

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agri Res 56:1159–1168

    Article  Google Scholar 

  • Bono M (1973) Contribution à la morpho-systématique des Pennisetum annuels cultivés pour leur grain en Afrique Occidentale francophone. L’Agronomie Trop Série 3. Agron Générale Etudes Sci 28:229–356

    Google Scholar 

  • Brunken JN (1977) A systematic study of Pennisetum sect. Pennisetum (Gramineae). Am J Bot 64:161–176

    Article  Google Scholar 

  • Brunken J, de Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Bot 31:163–174

    Article  Google Scholar 

  • Buerkert A, Moser M, Kumar AK, Fürst P, Becker K (2001) Variation in grain quality of pearl millet from Sahelian West Africa. Field Crops Res 69:1–11

    Article  Google Scholar 

  • Burgarella C, Cubry P, Kane NA, Varshney RK, Mariac C, Liu X, Shi C, Thudi M, Couderc M, Xu X, Chitikineni A, Scarcelli N, Barnaud A, Rhoné B, Dupuy C, François O, Berthouly-Salazar C, Vigouroux Y (2018) A western Sahara centre of domestication inferred from pearl millet genomes. Nat Ecol Evol 2:1377–1380

    Article  PubMed  Google Scholar 

  • Burton GW (1951) Quantitative inheritance in pearl millet (Pennisetum glaucum). Agron J 43:409–417

    Article  Google Scholar 

  • Burton GW (1965) Photoperiodism in pearl millet, Pennisetum typhoides. Crop Sci 5:333–335

    Article  Google Scholar 

  • Burton GW, Fortson JC (1966) Inheritance and utilization of five dwarfs in pearl millet (Pennisetum typhoides) breeding. Crop Sci 6:69–72

    Article  Google Scholar 

  • Burton GW, Powell JB (1968) Pearl millet breeding and cytogenetics. Adv Agron 20:49–89

    Article  Google Scholar 

  • Burton GW, Monson WG, Johnson JC, Lowrey RS, Chapman HD, Marchant WH (1969) Effect of the d2 dwarf gene on the forage yield and quality of pearl millet 1. Agron J 61:607–612

    Article  Google Scholar 

  • Butler EJ (1907) Some diseases of cereals caused by Sclerospora graminicola. Memiors of the Department of Agriculture in India. Bot Ser 2:1–24

    Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Google Scholar 

  • Cherney JH, Axtell JD, Hassen MM, Anliker KS (1988) Forage quality characterization of a chemically induced brown-midrib mutant in pearl millet. Crop Sci 28:783–787

    Article  Google Scholar 

  • Cherney DJ, Patterson JA, Johnson KD (1990) Digestibility and feeding value of pearl millet as influenced by the brown-midrib, low-lignin trait. J Anim Sci 68:4345–4351

    Article  CAS  PubMed  Google Scholar 

  • Clotault J, Thuillet AC, Buiron M, De Mita S, Couderc M, Haussmann BIGG, Mariac C, Vigouroux Y (2012) Evolutionary history of pearl millet [Pennisetum glaucum (L.) R. Br.] and selection on flowering genes since its domestication. Mol Biol Evol 29:1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Google Scholar 

  • D’Andrea AC, Casey J (2002) Pearl millet and Kintampo subsistence. Afr Arch Rev 19:147–173

    Article  Google Scholar 

  • Danjuma MN, Mohammed S (2014) Genetic diversity of pearl millet (Pennisetum typhoides) cultivars in semi-arid northern Nigeria. J Nat Sci Res 4:34–42

    Google Scholar 

  • Dave HR (1987) Pearl millet hybrids. In: Witcombe JR, Beckerman SR (eds) Proceedings of the international pearl millet workshop. ICRISAT, Patancheru, AP 502324, India, pp 121–126

    Google Scholar 

  • Delêtre M, McKey DB, Hodkinson TR (2011) Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc Natl Acad Sci USA 108:18249–18254

    Article  PubMed  PubMed Central  Google Scholar 

  • Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198

    Article  CAS  Google Scholar 

  • Dingkuhn M, Singh BB, Clerget B, Chantereau J, Sultan B (2006) Past, present and future criteria to breed crops for water-limited environments in West Africa. Agri Water Manage 80:241–261

    Article  Google Scholar 

  • Djanaguiraman M, Perumal R, Ciampitti IA, Gupta SK, Prasad PVV (2017) Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell Environ 41:993–1007

    Article  CAS  Google Scholar 

  • dos Reis GB, Mesquita AT, Torres GA, Andrade-Vieira LF, Vander Pereira A, Davide LC (2014) Genomic homeology between Pennisetum purpureum and Pennisetum glaucum (Poaceae). Comp Cytogenet 8:199–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujardin M, Hanna WW (1989) Crossability of pearl millet with wild Pennisetum species. Crop Sci 29:77–80

    Article  Google Scholar 

  • Emendack Y, Herzog H, Götz K-P, Malinowski D (2011) Mid-Season water stress on yield and water use of millet (Panicum miliaceum) and sorghum (Sorghum bicolor L. Moench)

    Google Scholar 

  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Article  Google Scholar 

  • FAO (2013) Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAOSTAT (2013) FAO Statistics YearBook 2013, Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Nat Acad Sci 96(4):1175–1180

    Google Scholar 

  • Gahukar RT (1984) Insect pests of pearl millet in West Africa: a review. Trop Pest Manage 30:142–147

    Article  Google Scholar 

  • Gahukar RT (1988) Problems and perspectives of pest management in the Sahel: a case study of pearl millet. Trop Pest Manage 34:35–38

    Article  Google Scholar 

  • Gahukar RT (1991) Pest status and control of blister beetles in West Africa. Trop Pest Manage 37:415–420

    Article  Google Scholar 

  • Gale MD, Devos KM, Zhu JH, Allouis S, Couchman MS, Liu H, Pittaway TS, Qi XQ, Kolesnikova-Allen M, Hash CT (2005) New molecular marker technologies for pearl millet improvement. SAT eJournal 1:1–7

    Google Scholar 

  • Gemenet DC, Hash CT, Sanogo MD, Sy O, Zangre RG, Leiser WL, Haussmann BIG (2015) Phosphorus uptake and utilization efficiency in West African pearl millet inbred lines. Field Crops Res 171:54–66

    Article  Google Scholar 

  • George S, Prashanth SR, Parida A (2005) Diversity and species relationship in pearl millet (Pennisetum typhoides) and related species. J Plant Biochem Biotechnol 14:141–147

    Article  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?. Trends Plant Sci 9(12):597–605

    Google Scholar 

  • Govindaraj M, Rai KN, Kanatti A, Velu G, Shivade H (2016) Breeding high-iron pearl millet cultivars: present status and future prospects. In: 2nd international conference on global food security. October 11–14, 2015, Ithaca, NY, USA

    Google Scholar 

  • Guo Y, Busta L, Jetter R (2017) Cuticular wax coverage and composition differ among organs of Taraxacum officinale. Plant Physiol Biochem 115:372–379

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC (1995) Inheritance and allelic study of brown midrib trait in pearl millet. J Hered 86:301–303

    Article  Google Scholar 

  • Gupta GK, Singh D (1996) Studies on the influence of downy mildew infection on yield and yield-contributing plant characters of pearl millet in India. Intl J Pest Manag 42:89–93

    Article  Google Scholar 

  • Gupta SC, Monyo ES, Rao SA (1993) Registration of SDML 89107 brown midrib pearl millet germplasm. Crop Sci 33:882

    Article  Google Scholar 

  • Gupta SK, Velu G, Rai KN, Sumalini K (2009) Association of grain iron and zinc content with grain yield and other traits in pearl millet. Crop Improv 36:4–7

    Google Scholar 

  • Gupta SK, Sharma R, Rai KN, Thakur RP (2011) Inheritance of foliar blast resistance in pearl millet (Pennisetum glaucum). Plant Breed 131:217–219

    Article  Google Scholar 

  • Gupta SK, Nepolean T, Sankar SM (2015a) Patterns of molecular diversity in current and previously developed hybrid parents of pearl millet [Pennisetum glaucum (L.) R. Br.]. Amer J Plant Sci 6:1697–1712

    Article  CAS  Google Scholar 

  • Gupta SK, Rai KN, Singh P, Ameta VL, Gupta SK, Jayalekha AK, Mahala RS, Pareek S, Swami ML, Verma YS (2015b) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crops Res 171:41–53

    Article  Google Scholar 

  • Gupta SK, Nepolean T, Shaikh CG, Rai K, Hash CT, Das RR, Rathore A (2018) Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.). Crop J 6:271–281

    Article  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    Google Scholar 

  • Hammer K (1984) Das domestikationssyndrom. Die Kult 32:11–34

    Article  Google Scholar 

  • Hanna WW (1987) Utilization of wild relatives of pearl millet. In: Witcombe JR, Beckman SR (eds) Proceedings of the international pearl millet workshop, ICRISAT, Patancheru, AP, India, pp 33–42

    Google Scholar 

  • Hanna WW, Burton GW (1992) Genetics of red and purple plant color in pearl millet. J Hered 83:386–388

    Article  Google Scholar 

  • Hanna WW, Dujardin M (1986) Cytogenetics of Pennisetum schweinfurthii Pilger and its hybrids with pearl millet. Crop Sci 26:449–453

    Article  Google Scholar 

  • Hanna WW, Wells HD, Burton GW (1985) Dominant gene for rust resistance in pearl millet. J Hered 76:134

    Article  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Google Scholar 

  • Harlan JR, De-Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hash CT, Thakur RP, Rao VP, Bhaskar RAG (2006) Evidence for enhanced resistance to diverse isolates of pearl millet downy mildew through gene pyramiding. Intl Sorghum Millets Newsl 47:134–138

    Google Scholar 

  • Haussmann BIG, Fred Rattunde H, Weltzien-Rattunde E, Traoré PSC, vom Brocke K, Parzies HK (2012) Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. J Agron Crop Sci 198:327–339

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Yang Y, Morrell PL, Yi T (2015) Nucleotide sequence diversity and linkage disequilibrium of four nuclear loci in foxtail millet (Setaria italica). PLoS ONE 10:e0137088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman GC, Davis MS (1990) Domestication rates in wild-type wheats and barley under primitive cultivation. Biol J Linn Soc 39:39–78

    Article  Google Scholar 

  • Howarth CJ, Yadav RS (2002) Successful marker assisted selection for drought tolerance and disease resistance in pearl millet. Iger Innov 18–21

    Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP (2015) Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16:1048

    Google Scholar 

  • Ibrahim YM, Marcarian V, Dobrenz AK (1985) Evaluation of drought tolerance in pearl millet (Pennisetum americanum (L.) Leeke) under a sprinkler irrigation gradient. Field Crops Res 11:233–240

    Article  Google Scholar 

  • Jagadish SVK, Septiningsih EM, Kohli A, Thomson MJ, Ye C, Redona E, Kumar A, Gregorio GB, Wassmann R, Ismail AM, Singh RK (2012) Genetic advances in adapting rice to a rapidly changing climate. J Agron Crop Sci 198:360–373

    Article  Google Scholar 

  • Jauhar PP (1981) Cytogenetics and breeding of pearl millet and related species. Alan R Liss, New York, USA

    Google Scholar 

  • Jauhar PP, Hanna WW (1998) Cytogenetics and genetics of pearl millet. Adv Agron 64:1–26

    Article  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2007) Composition of plant cuticular waxes. Ann Plant Rev 23:145–181

    Google Scholar 

  • Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91:448–456

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR, Jonesa ES, Breeseb WA, Liuc CJ, Singhd SD, Shawb DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: Field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    Article  CAS  PubMed  Google Scholar 

  • Jukanti AK, Gowda CLL, Rai KN, Manga VK, Bhatt RK (2016) Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics. Food Secur 8:307–329

    Article  Google Scholar 

  • Kam J, Puranik S, Yadav R, Manwaring HR, Pierre S, Srivastava RK, Yadav RS (2016) Dietary interventions for type 2 diabetes: how millet comes to help. Front Plant Sci 7:1454

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannan B, Senapathy S, Bhasker Raj AG, Chandra S, Muthiah A, Dhanapal AP, Hash CT (2014) Association analysis of SSR markers with phenology, grain, and stover-yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Sci World J 2014:562327

    Google Scholar 

  • Kaushal P, Khare A, Nath Zadoo S, Roy A, Malaviya D, Agrawal A, Ali Siddiqui S, Nath Choubey R (2008) Sequential reduction of Pennisetum squamulatum genome complement in P. glaucum (2n = 28) × P. squamulatum (2n = 56) hybrids and their progenies revealed its octoploid status. Cytologia 73(2):151–158

    Google Scholar 

  • Khalfallah N, Sarr A, Siljak-Yakovlev S (1993) Karyological study of some cultivated and wild stocks of pearl millet from Africa (Pennisetum typhoides Stapf et Hubb. and P. violaceum (Lam.) L. Rich.). Caryologia 46:127–138

    Article  Google Scholar 

  • Kole C, Muthamilarasan M, Henry RJ, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, Cockram J, de Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Greenland A, Hall A, Hori K, Hughes S, Humphreys MW, Iorizzo M, Ismail AM, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Simon PW, Tohme J, Tuberosa R, Valliyodan B, Varshney RK, Wullschleger SD, Yano M, Prasad M, Kole C, Muthamilarasan M, Henry RJ, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, De Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Hall A, Hori K, Howe GT, Hughes S, Humphreys MW, Iorizzo M, Abdelbagi M, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563

    Google Scholar 

  • Kosma DK, Jenks MA (2007) Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, Dordrecht, pp 91–120

    Chapter  Google Scholar 

  • Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (l.) R. Br.]. Front Plant Sci 7:1636

    Google Scholar 

  • Kumar S, Hash CT, Nepolean T, Satyavathi CT, Singh G, Mahendrakar MD, Yadav RS, Srivastava RK (2017) Mapping QTLs controlling flowering time and important agronomic traits in pearl millet. Front Plant Sci 8:1731

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Hash CT, Nepolean T, Mahendrakar MD, Satyavathi CT, Singh G, Rathore A, Yadav RS, Gupta R, Srivastava RK (2018) Mapping grain iron and zinc content quantitative trait loci in an iniadi-derived immortal population of pearl millet. Genes 9:1–17

    Article  CAS  Google Scholar 

  • Kumari BR, Kolesnikova-Allen MA, Tom Hash C, Senthilvel S, Nepolean T, Kavi Kishor PB, Riera-Lizarazu O, Witcombe JR, Srivastava RK (2014) Development of a set of chromosome segment substitution lines in pearl millet. Crop Sci 54:2175

    Google Scholar 

  • Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234

    Article  CAS  PubMed  Google Scholar 

  • Kusaka M, Lalusin AG, Fujimura T (2005) The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Sci 168:1–14

    Article  CAS  Google Scholar 

  • Lagudah ES, Hanna WW (1989) Species relationship in the Pennisetum gene pool: enzyme polymorphism. Theor Appl Genet 78:801–808

    Article  CAS  PubMed  Google Scholar 

  • Lakis G, Navascués M, Rekima S, Simon M, Remigereau M-SS, Leveugle M, Takvorian N, Lamy F, Depaulis F, Robert T (2012) Evolution of neutral and flowering genes along pearl millet (Pennisetum glaucum) domestication. PLoS ONE 7:e36642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Martinoia E, Renton M (2015) Plant adaptations to severely phosphorus-impoverished soils. Curr Opin Plant Biol 25:23–31

    Article  CAS  PubMed  Google Scholar 

  • Leder Iren (2004) Sorghum and millets, in cultivated plants, primarily as food sources. In: Füleky G (ed) Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO, vol 1. Eolss Publishers, Oxford, UK, p 66

    Google Scholar 

  • Li Y, Bhosale S, Haussmann BI, Stich B, Melchinger AE, Parzies HK (2018) Genetic diversity and linkage disequilibrium of two homologous genes to maize D8: sorghum SbD8 and pearl millet PgD8. J Plant Breed Crop Sci 2(5):117–128

    Google Scholar 

  • Liang Z, Gupta SK, Yeh C-T, Zhang Y, Ngu DW, Kumar R, Patil HT, Mungra KD, Yadav DV, Rathore A, Srivastava RK, Gupta R, Yang J, Varshney RK, Schnable PS, Schnable JC (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. Genes Genomes|Genet 8:2513–252

    Google Scholar 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487

    Article  CAS  PubMed  Google Scholar 

  • Longin CF, Mi X, Wurschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Maman N, Mason SC, Lyon DJ (2006) Nitrogen rate influence on pearl millet yield, nitrogen uptake, and nitrogen use efficiency in Nebraska. Commun Soil Sci Plant Anal 37:127–141

    Article  CAS  Google Scholar 

  • Manning K, Pelling R, Higham T, Schwenniger JL, Fuller DQ (2011) 4500-Year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: New insights into an alternative cereal domestication pathway. J Arch Sci 38:312–322

    Article  Google Scholar 

  • Marchais L, Pernes J (1985) Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides). I. Male sterility. Z Pflanzenzüchtg 95:103–112

    Google Scholar 

  • Martel E, Ricroch A, Sarr A (1996) Assessment of genome organization among diploid species (2n = 2x = 14) belonging to primary and tertiary gene pools of pearl millet using fluorescent in situ hybridization with rDNA probes. Genome 39:680–687

    Article  CAS  PubMed  Google Scholar 

  • Martel E, De Nay D, Siljak-Yakovlev S, Brown S, Sarr A (1997) Genome size variation and basic chromosome number in Pearl millet and fourteen related Pennisetum species. J Hered 88:139–143

    Article  Google Scholar 

  • Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of its phylogeny. Plant Syst Evol 249:139–149

    Article  Google Scholar 

  • Matsuura A, Inanaga S, Sugimoto Y (1996) Mechanism of interspecific differences among four gramineous crops in growth response to soil drying. Jpn J Crop Sci 65:352–360

    Article  CAS  Google Scholar 

  • McIntyre BD, Riha SJ, Flower DJ (1995) Water uptake by pearl millet in a semiarid environment. Field Crops Res 43:67–76

    Article  Google Scholar 

  • Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK (2007) Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol 64:713–732

    Article  CAS  PubMed  Google Scholar 

  • Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. J Ecol 97:923–932

    Article  Google Scholar 

  • Morgan RN, Wilson JP, Hanna WW, Ozias-Akins P (1998) Molecular markers for rust and pyricularia leaf spot disease resistance in pearl millet. Theor Appl Genet 96:413–420

    Article  CAS  PubMed  Google Scholar 

  • Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BIG, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35:1–10

    Article  CAS  Google Scholar 

  • Nagarathna KC, Shetty SA, Bhat SG, Shetty HS (1992) The possible involvement of lipoxygenase in downy mildew resistance in pearl millet. J Exp Bot 43:1283–1287

    Article  CAS  Google Scholar 

  • Naino Jika AK, Dussert Y, Raimond C, Garine E, Luxereau A, Takvorian N, Djermakoye RS, Adam T, Robert T (2017) Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin. Heredity 118:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayaka SC, Shetty HS, Satyavathi CT, Yadav RS, Kishor PBK, Nagaraju M, Anoop TA, Kumar MM, Kuriakose B, Chakravartty N, Katta AVSKM, Lachagari VBR, Singh OV, Sahu PP, Puranik S, Kaushal P, Srivastava RK (2017) Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen. Biotechnol Rep 16:18–20

    Article  Google Scholar 

  • Nepolean T, Gupta SK, Dwivedi SL, Bhattacharjee R, Rai KN, Hash CT (2012) Genetic diversity in maintainer and restorer lines of pearl millet. Crop Sci 52:2555–2563

    Article  CAS  Google Scholar 

  • Nwanze KF, Harris KM (1992) Insect pests of pearl millet in West Africa. Rev Agri Entomol 80:1133–1155

    Google Scholar 

  • Obeng E, Cebert E, Ward R, Nyochembeng LM, Mays DA, Singh HP, Singh BP (2015) Insect incidence and damage on pearl millet (Pennisetum glaucum) under various nitrogen regimes in Alabama. Florida Entomol 98:74–79

    Article  Google Scholar 

  • Ochatt S, Sangwan R, Marget P, Yves Placide A, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440

    Article  Google Scholar 

  • Oelke EA, Oplinger ES, Putnam DH, Durgan BR, Doll JD, Undersander DJ (1990) Alternative field crops manual: millets. University of Wisconsin Cooperative or Extension Service, Department of Agronomy, Madison and Center for Alternative Plant and Animal Products, University of Minnesota, St. Paul, MN

    Google Scholar 

  • Oumar I, Mariac C, Pham J-LL, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497

    Article  CAS  PubMed  Google Scholar 

  • Paleg LG, Stewart GR, Bradbeer JW (1984) Proline and glycine betaine influence protein solvation. Plant Physiol 75:974–978. https://doi.org/10.1104/pp.75.4.974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvathaneni RK, Jakkula V, Padi FK, Faure S, Nagarajappa N, Pontaroli AC, Wu X, Bennetzen JL, Devos KM (2013) Fine-mapping and identification of a candidate gene underlying the d2 dwarfing phenotype in pearl millet, Cenchrus americanus (L.) Morrone. Genes Genomes Genet 3:563–572

    CAS  Google Scholar 

  • Parvathaneni RK, DeLeo VL, Spiekerman JJ, Chakraborty D, Devos KM (2017) Parallel loss of introns in the ABCB1 gene in angiosperms. BMC Evol Biol 17:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passot S, Gnacko F, Moukouanga D, Lucas M, Guyomarc’h S, Ortega BM, Atkinson JA, Belko MN, Bennett MJ, Gantet P, Wells DM, Guédon Y, Vigouroux Y, Verdeil J-L, Muller B, Laplaze L (2016) Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci 7:1–11

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev I V, Lyons E, Maher C a, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Google Scholar 

  • Pattanashetti SK, Upadhyaya HD, Dwivedi SL, Vetriventhan M, Reddy KN (2016) Pearl millet. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic Press, San Diego, CA, pp 253–289

    Chapter  Google Scholar 

  • Payne WA, Malcolm DC, Hossner LR, Lascao RJ, Onken AB, Wendt CW (1992) Soil phosphorus availability and pearl millet water-use efficiency. Crop Sci 32:1010–1015

    Article  CAS  Google Scholar 

  • Peacock JM, Soman P, Jayachandran R, Rani AU, Howarth CJ, Thomas A (1993) Effects of high soil surface temperature on seedling survival in pearl millet. Exp Agri 29:215–225

    Article  Google Scholar 

  • Pedraza-Garcia F, Specht JE, Dweikat I (2010) A new PCR-based linkage map in pearl millet. Crop Sci 50:1754–1760

    Article  CAS  Google Scholar 

  • Perales HR, Benz BF, Brush SB (2005) Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proc Natl Acad Sci USA 102:949–954. https://doi.org/10.1073/pnas.0408701102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  PubMed  Google Scholar 

  • Poncet V, Lamy F, Devos KM, Gale MD, Sarr A, Robert T (2000) Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theor Appl Genet 100:147–159

    Article  CAS  Google Scholar 

  • Punnuri SM, Wallace JG, Knoll JE, Hyma KE, Mitchell SE, Buckler ES, Varshney RK, Singh BP (2016) Development of a high-density linkage map and tagging leaf spot resistance in pearl millet using genotyping-by-sequencing markers. Plant Genome 9:1–13

    Article  CAS  Google Scholar 

  • Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM (2001) Development of simple sequence repeat markers from bacterial artificial chromosomes without subcloning. Biotechniques 31:355–362

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493

    Article  CAS  PubMed  Google Scholar 

  • Rai KN, Hanna WW (1990) Morphological characteristics of tall and dwarf pearl millet isolines. Crop Sci 30:23–25

    Article  Google Scholar 

  • Rai KN, Virk DS (1999) Breeding methods. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Oxford & IBH Publishing, New Delhi, India, pp 185–211

    Google Scholar 

  • Rai KN, Gupta SK, Bhattacharjee R, Kulkarni V, Singh AK, Rao AS (2009) Morphological characteristics of ICRISAT-bred pearl millet hybrid seed parents. J SAT Agri Res 7:1–169

    Google Scholar 

  • Rai KN, Govindaraj M, Rao AS (2012) Genetic enhancement of grain iron and zinc content in pearl millet. Qual Assur Saf Crop Foods 4:119–125

    Article  CAS  Google Scholar 

  • Rai KN, Yadav OP, Rajpurohit BS, Patil HT, Govindaraj M, Khairwal IS, Rao AS, Shivade H, Pawar VY (2013) Breeding pearl millet cultivars for high iron density with zinc density as an associated trait. J SAT Agri Res 11:1–7

    Google Scholar 

  • Rai KN, Velu G, Govindaraj M, Upadhyaya HD, Rao AS, Shivade H, Reddy KN, Rai KN, Velu G, Govindaraj M, Upadhyaya HD, Rao AS, Shivade H, Reddy KN (2015) Iniadi pearl millet germplasm as a valuable genetic resource for high grain iron and zinc densities. Plant Genet Resour 13:75–82. https://doi.org/10.1017/S1479262114000665

    Article  CAS  Google Scholar 

  • Raj C, Sharma R, Pushpavathi B, Gupta SK, Radhika K (2018) Inheritance and allelic relationship among downy mildew resistance genes in pearl millet. Plant Dis 102:1136–1140

    Article  PubMed  Google Scholar 

  • Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, Shah TM, Supriya A, Kumar S, Kumari BR, Bhanuprakash A, Narasu ML, Riera-Lizarazu O, Hash CT (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14:159

    Google Scholar 

  • Raju NSN, Rao YS, Rao MVS, Manga V (1985) Anthocyanidins of purple and sub-red pigmentation in pearl millet (Pennisetum americanum). Indian J Bot 8:185–186

    CAS  Google Scholar 

  • Ramakrishnan TS (1971) Diseases of millets. Indian Council of Agriculture Research, New Delhi, India

    Google Scholar 

  • Ramya AR, Ahamed ML, Satyavathi CT, Rathore A, Katiyar P, Raj AGB, Kumar S, Gupta R, Mahendrakar MD, Yadav RS, Srivastava RK (2018) Towards defining heterotic gene pools in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 8:1934

    Google Scholar 

  • Rao SA, Mengesha MH, Sharma D (1985) Collection and evaluation of pearl millet (Pennisetum americanum) germplasm from Ghana. Econ Bot 39:25–38

    Article  Google Scholar 

  • Rao PP, Birthal PS, Reddy BVS, Rai KN, Ramesh S (2006) Diagnostics of sorghum and pearl millet grains-based nutrition in India. Intl Sorghum Millets Newsl 47:93–96

    Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458

    Article  CAS  PubMed  Google Scholar 

  • Robert T, Khalfallah N, Martel E, Lamy F, Poncet V, Allinne C, Remigereau M-S, Rekima S, Leveugle M, Lakis G, Siljak-Yakovlev S, Sarr A (2011) Pennisetum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, millets and grasses. Springer, Berlin, Heidelberg, pp 217–255

    Chapter  Google Scholar 

  • Rostamza M, Richards RA, Watt M (2013) Response of millet and sorghum to a varying water supply around the primary and nodal roots. Ann Bot 112:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safriel U, Adeel Z, Niemeijer D, Puigdefabregas J, White R, Lal R, Winslow M, Ziedler J, Prince S, Archer E, King C, Shapiro B, Wessels K, Nielsen T, Portnov B, Reshef I, Thonell J, Lachman E, Mcnab D (2005) Dryland systems. Washington DC, USA

    Google Scholar 

  • Saïdou AA, Mariac C, Luong V, Pham JL, Bezançon G, Vigouroux Y (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182:899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saïdou A-A, Clotault J, Couderc M, Mariac C, Devos KM, Thuillet A-C, Amoukou IA, Vigouroux Y (2014) Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the Phytochrome C gene in pearl millet. Theor Appl Genet 127:19–32

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Sanon M, Hoogenboom G, Traoré SB, Sarr B, Garcia Y, Garcia A, Somé L, Roncoli C (2014) Photoperiod sensitivity of local millet and sorghum varieties in West Africa. NJAS—Wageningen J Life Sci 68:29–39

    Google Scholar 

  • Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178:229–238

    Article  CAS  Google Scholar 

  • Schnable PS (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schoper JB, Lambert RJ, Vasilas BL, Westgate ME (1987) Plant factors controlling seed set in maize: the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol 83:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS ONE 10:e0122165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash C (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serba DD, Yadav RS (2016) Genomic tools in pearl millet breeding for drought tolerance: status and prospects. Front Plant Sci 7:1724

    Article  PubMed  PubMed Central  Google Scholar 

  • Serba DD, Perumal R, Tesso TT, Min D (2017) Status of global pearl millet breeding programs and the way forward. Crop Sci 57:2891–2905

    Article  Google Scholar 

  • Serba DD, Muleta KT, St Amand P, Bernardo A, Bai G, Ramasamy P, Bashir E (2019) Genetic diversity, population structure, and linkage disequilibrium in pearl millet. The Plant Genome. https://doi.org/10.3835/plantgenome2018.11.0091

    Article  PubMed  Google Scholar 

  • Serraj R, Tom Hash C, Rizvi SMH, Sharma A, Yadav RS, Bidinger FR (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:334–337

    Article  Google Scholar 

  • Shivhare R, Lata C (2016) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069

    PubMed  Google Scholar 

  • Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:43991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SD (1990) Sources of resistance to downy mildew and rust in pearl millet. Plant Dis 74:871–874

    Article  Google Scholar 

  • Singh SD (1995) Downy mildew of pearl millet. Plant Dis 79:545–550

    Article  Google Scholar 

  • Singh SD, Williams RJ (1980) The role of sporangia in the epidemiology of pearl millet downy mildew. Phytopathology 70:1187–1190

    Article  Google Scholar 

  • Singh SD, Wilson JP, Navi SS, Talukdar BSS, Hess DE, Reddy KN (1997) Screening techniques and sources of resistance to downy mildew and rust in pearl millet. ICRISAT, 110 pp, Patancheru, India

    Google Scholar 

  • Singh S, Sharma R, Pushpavathi B, Gupta SK, Durgarani CV, Raj C (2018) Inheritance and allelic relationship among gene(s) for blast resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Breed 137:573–584

    Article  CAS  Google Scholar 

  • Sivakumar MVK, Salaam SA (1999) Effect of year and fertilizer on water-use efficiency of pearl millet (Pennisetum glaucum) in Niger. J Agri Sci 132:139–148

    Article  Google Scholar 

  • Srinivasarao C, Lal R, Kundu S, Babu MBBP, Venkateswarlu B, Singh AK (2014) Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Sci Total Environ 487:587–603

    Article  CAS  PubMed  Google Scholar 

  • Stapf O, Hubbard CE (1934) Pennisetum. In: Prain D (ed) Flora of tropical Africa, vol 9 part 6, Gramineae (Maydeae–Paniceae). Reeve, London, pp 954–1070

    Google Scholar 

  • Stich B, Haussmann BI, Pasam R, Bhosale S, Hash CT, Melchinger AE, Parzies HK (2010) Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to geographical and environmental parameters. BMC Plant Biol 10:216

    Google Scholar 

  • Stone P (2001) The effects of heat stress on cereal yield and quality. In: Basra AS (ed) Crop responses and adaptations to temperature stress. Food Products Press, Binghamton, NY, USA, pp 243–291

    Google Scholar 

  • Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649 LP-1665

    Google Scholar 

  • Sultan B, Roudier P, Quirion P, Alhassane A, Muller B, Dingkuhn M, Ciais P, Guimberteau M, Traore S, Baron C (2013) Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ Res Lett 8:014040

    Article  Google Scholar 

  • Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan M (1937) The relative value of the proteins of certain foodstuffs in nutrition. Indian J Med Res 24:767–786

    CAS  Google Scholar 

  • Swaminathan MS, Naik MS, Kaul AK, Austin A (1971) Choice of strategy for the genetic upgrading of protein properties in cereals, millets and pulses. Indian J Agril Res 41:393–406

    Google Scholar 

  • Takei E, Sakamoto S (1987) Geographical variation of heading response to daylength in foxtail millet (Setaria italica P. BEAUV.). Jpn J Breed 37:150–158

    Article  Google Scholar 

  • Tapsoba H, Wilson JP (1995) Isolation of pathogenic races of Puccinia substriata var. indica with new sources of rust resistant pearl millet. In: Peare ID (ed) Proceedings of the first national grain pearl millet symposium. University of Georgia, Tifton, GA, USA, pp 57–60

    Google Scholar 

  • Thakur RP, Shetty HS, Khairwal IS (2006) Pearl millet downy mildew research in India: progress and perspectives. J SAT Agri Res 2:1–6

    Google Scholar 

  • Thakur RP, Rai KN, Khairwal IS, Mahala RS (2008) Strategy for downy mildew resistance breeding in pearl millet in India. SAT eJournal 6:1–11

    Google Scholar 

  • Thakur RP, Sharma R, Rao VPP, Rajan S, Rao VPP (2011) Screening techniques for pearl millet diseases. Information Bulletin No 89. ICRISAT, Patancheru, India

    Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Traore M (1985) Physiological and morphological mechanisms of drought resistance in sorghum and pearl millet. I. Effects of leaf treatment with abscisic acid. II. Seed pre-treatment with abscisic acid. III. Comparative shoot and root development. IV. Leaf surface morphol. University of Nebraska, Lincoln

    Google Scholar 

  • Trostle C, Corriher-Olson V, Knutson A (2015) Hybrid pearl millet as an alternative to sugarcane aphid-susceptible sorghum family forages. Texas A&M AgriLife Extension Service

    Google Scholar 

  • Upadhyaya HD, Reddy KN, Gowda CLL (2007) Pearl millet germplasm at ICRISAT genebank—status and impact. SAT eJournal 3:1–5

    Google Scholar 

  • Upadhyaya HD, Yadav D, Reddy KN, Gowda CLL, Singh S (2011) Development of pearl millet minicore collection for enhanced utilization of germplasm. Crop Sci 51:217–223

    Article  Google Scholar 

  • Upadhyaya H, Reddy K, Ahmed MI, Dronavalli N, Laxmipathi Gowda C (2012) Latitudinal variation and distribution of photoperiod and temperature sensitivity for flowering in the world collection of pearl millet germplasm at ICRISAT genebank. Plant Genet Resour 10:59–69

    Article  Google Scholar 

  • USDA (2014) Comparison of five millet species for conservation use in the United States. USDA Plant Materials Technical Note No 2, 12 pp

    Google Scholar 

  • Varalakshmi P, Mohan Dev Tavva SS, Arjuna Rao PV, Subba Rao MV, Hash CT (2012) Genetic architecture of purple pigmentation and tagging of some loci to SSR markers in pearl millet, Pennisetum glaucum (L.) R. Br. Genet Mol Biol 35:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta SK, Wang H, Jiang Y, Couderc M, Katta MAVSK, Paudel DR, Mungra KD, Chen W, Harris-Shultz KR, Garg V, Desai N, Doddamani D, Kane NA, Conner JA, Ghatak A, Chaturvedi P, Subramaniam S, Yadav OP, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya HD, Cubry P, Rhoné B, Gueye MC, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala RS, Singh B, Yadav RS, Lyons E, Datta SK, Tom Hash C, Devos KM, Buckler E, Bennetzen JL, Paterson AH, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif JC, Liu X, Vigouroux Y, Xu X (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 1–7. https://doi.org/10.1016/j.pbi.2018.03.007

  • Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126:182–185

    Article  CAS  Google Scholar 

  • Vengadessan V, Rai KN, Kannan Bapu JR, Hash CT, Bhattacharjee R, Senthilvel S, Vinayan MT, Nepolean T (2013) Construction of genetic linkage map and QTL analysis of sink-size traits in pearl millet (Pennisetum glaucum). ISRN Genet 2013:1–14

    Article  CAS  Google Scholar 

  • Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Guo L, Li Y, Wang Z (2012) Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst Biol 6:S9–S9

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Google Scholar 

  • Westengen OT, Okongo MA, Onek L, Berg T, Upadhyaya H, Birkeland S, Kaur Khalsa SD, Ring KH, Stenseth NC, Brysting AK (2014) Ethnolinguistic structuring of sorghum genetic diversity in Africa and the role of local seed systems. Proc Natl Acad Sci USA 111:14100–14105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013) Matching roots to their environment. Ann Bot 112:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JP (2002) Disease of pearl millet in the Americas. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, Iowa, pp 465–469

    Google Scholar 

  • Wilson JP, Hanna WW (1992) Effects of gene and cytoplasm substitutions in pearl millet on leaf blight epidemics and infection by Pyricularia grisea. Phytopathology 82:839–842

    Article  Google Scholar 

  • Wilson JP, Hanna WW, Gascho G, Wilson DM (1995) Pearl millet grain yield loss from rust infection. In: Teare ID (ed) Proceedings of the first national grain pearl millet symposium. University of Georgia, Tifton, GA, USA, pp 54–56

    Google Scholar 

  • Wilson JP, Hess DE, Hanna WW, Kumar KA, Gupta SC (2004) Pennisetum glaucum subsp. monodii accessions with Striga resistance in West Africa. Crop Protec 23:865–870

    Article  Google Scholar 

  • Wimpee CF, Rawson JRY (1979) Characterization of the nuclear genome of pearl millet. Biochim Biophys Acta—Nucl Acids Protein Synth 562:192–206

    Article  CAS  Google Scholar 

  • Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav OP (2010) Drought response of pearl millet landrace-based populations and their crosses with elite composites. Field Crops Res 118:51–56. https://doi.org/10.1016/j.fcr.2010.04.005

    Article  Google Scholar 

  • Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agri Res 2:275–292

    Article  CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Howarth CJ (1999) QTL analysis and marker-assisted breeding of traits associated with drought tolerance in pearl millet. In: Ito O, O’Toole J, Hardy B (eds) Genetic improvement of rice for water-limited environments. International Rice Research Institute, Manila, Philippines, pp 221–233

    Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104:67–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Bidinger F, Hash C, Yadav Y, Yadav O, Bhatnagar S, Howarth C (2003) Mapping and characterisation of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yadav OP, Rai KN, Gupta SK (2012) Pearl millet: genetic improvement in tolerance to abiotic stresses. In: Improving crop productivity in sustainable agriculture, pp 261–288

    Google Scholar 

  • Yadav O, Rai K, Yadav H, Rajpurohit B, Gupta S, Rathore A, Karjagi C (2016) Assessment of diversity in commercial hybrids of pearl millet in India. Indian J Plant Genet Resour 29:130

    Article  Google Scholar 

  • Yadav OP, Upadhyaya HD, Reddy KN, Jukanti AK, Pandey S, Tyagi RK (2017) Genetic resources of pearl millet: status and utilization. Indian J Plant Genet Resour 30:31–47

    Article  Google Scholar 

  • Yakubu H, Ngala AL, Dugje IY (2010) Screening of millet (Pennisetum glaucum L.) varieties for salt tolerance in semi-arid soil of Northern Nigeria. World J Agri Sci 6:374–380

    CAS  Google Scholar 

  • Yu J (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Zegada-Lizarazu W, Iijima M (2005) Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Prod Sci 8:454–460

    Article  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for the senior author was provided by the United States Agency for International Development under Cooperative Agreement No. AID-OAA-A-13-00047 with the Kansas State University Sorghum and Millet Innovation Lab (SMIL). The contents are solely the responsibility of the authors and do not necessarily reflect the views of USAID or others. This is contribution number 19-043-B from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desalegn D. Serba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serba, D.D. et al. (2020). Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments. In: Kole, C. (eds) Genomic Designing of Climate-Smart Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-93381-8_6

Download citation

Publish with us

Policies and ethics