Skip to main content

Detection and Explanation of Anomalous Payment Behavior in Real-Time Gross Settlement Systems

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 321)

Abstract

In this paper, we discuss how to apply an autoencoder to detect anomalies in payment data derived from an Real-Time Gross Settlement system. Moreover, we introduce a drill-down procedure to measure the extent to which the inflow or outflow of a particular bank explains an anomaly. Experimental results on real-world payment data show that our method can detect the liquidity problems of a bank when it was subject to a bank run with reasonable accuracy.

Keywords

  • Anomaly detection
  • Autoencoders
  • Payment behavior
  • Real-Time Gross Settlement systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • DOI: 10.1007/978-3-319-93375-7_8
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (Canada)
  • ISBN: 978-3-319-93375-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (Canada)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    Many FMIs settle their positions in an RTGS system.

  2. 2.

    A feature of many RTGS systems is that banks may initiate payments on behalf of other banks. This is known as tiering, see e.g. [1]. Payments settled between indirect participants in the settlement system via the same direct participant are recorded as internal payments of the direct participant.

  3. 3.

    For a more detailed description of TARGET2, see [15, 16].

  4. 4.

    The extent to which banks actively participated in the settlement system was based on the number of payments that they initiated each month.

References

  1. Adams, M., Galbiati, M., Giansante, S.: Liquidity Costs and Tiering in Large-Value Payment Systems (2010)

    Google Scholar 

  2. Allen, F., Gale, D.: Financial contagion. J. Polit. Econ. 108, 1–33 (2000)

    CrossRef  Google Scholar 

  3. Bech, M., Soramäki, K.: Gridlock resoluation and bank failures in interbank payment systems. In: Leinonen, H. (ed.) Liquidity, Risks and Speed in Payment and Settlement Systems - A Simulation Approach, Proceedings from the Bank of Finland Payment and Settlement System Seminars 2005, pp. 149–176 (2005)

    Google Scholar 

  4. Becher, C., Galbiati, M., Tudela, M.: The timing and funding of CHAPS sterling payments. Econ. Policy Rev. 14, 113–133 (2008)

    Google Scholar 

  5. Benos, E., Garratt, R., Zimmerman, P.: Bank Behaviour and Risks in CHAPS Following the Collapse of Lehman Brothers (2012)

    Google Scholar 

  6. Berndsen, R., Heijmans, R.: Risk Indicators for Financial Market Infrastructure: From High Frequency Transaction Data to a Traffic Light Signal. De Nederlandsche Bank Working Paper No. 557 (2017)

    Google Scholar 

  7. BIS: Real-time Gross Settlement Systems (1997)

    Google Scholar 

  8. Bottou, L.: Stochastic learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 146–168. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_7

    CrossRef  MATH  Google Scholar 

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15:1–15:58 (2009)

    CrossRef  Google Scholar 

  10. CPSS: Principles for Financial Market Infrastructures: Disclosure Framework and Assessment Methodology. Bank for International Settlements (2012)

    Google Scholar 

  11. Dau, H.A., Ciesielski, V., Song, A.: Anomaly detection using replicator neural networks trained on examples of one class. In: Dick, G., Browne, W.N., Whigham, P., Zhang, M., Bui, L.T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K.C., Tang, K. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 311–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_27

    CrossRef  Google Scholar 

  12. Diehl, M.: The use of simulations as an analytical tool for payment systems. In: Alexandrova-Kabadjova, B., Martinez-Jaramillo, S., Garcia-Almanza, A., Tsang, E. (eds.) Simulation in Computational Finance and Economics: Tools and Emerging Applications, pp. 29–45. IGI Global (2012)

    Google Scholar 

  13. Diehl, M.: Measuring free riding in large-value payment systems: the case of TARGET2. J. Financ. Mark. Infrastruct. 1(3), 31–53 (2013)

    CrossRef  Google Scholar 

  14. Donoho, S.: Early detection of insider trading in option markets. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM (2004)

    Google Scholar 

  15. ECB: Information Guide for TARGET2 Users (2010)

    Google Scholar 

  16. ECB: TARGET anual report 2011 (2012)

    Google Scholar 

  17. Embree, L., Roberts, T.: Network Analysis and Canada’s Large Value Transfer System (2009)

    Google Scholar 

  18. Ferdousi, Z., Maeda, A.: Unsupervised outlier detection in time series data. In: 22nd International Conference on Data Engineering Workshops (ICDEW 2006), pp. 51–56. IEEE (2006)

    Google Scholar 

  19. Ghosh, S., Reilly, D.L.: Credit card fraud detection with a neural-network. In: 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences, vol. 3, pp. 621–630. IEEE (1994)

    Google Scholar 

  20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  21. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46145-0_17

    CrossRef  Google Scholar 

  22. Heijmans, R., Heuver, R.: Preparing simulations in large value payment systems using historical data. In: Alexandrova-Kabadjova, B., Martinez-Jaramillo, S., Garcia-Almanza, A., Tsang, E. (eds.) Simulation in Computational Finance and Economics: Tools and Emerging Applications, pp. 46–68. IGI Global, Hershey (2012)

    Google Scholar 

  23. Heijmans, R., Heuver, R.: Is this bank ill? the diagnosis of doctor TARGET2. J. Financ. Mark. Infrastruct. 2(3), 3–36 (2014)

    CrossRef  Google Scholar 

  24. Kim, Y., Sohn, S.Y.: Stock fraud detection using peer group analysis. Expert Syst. Appl. 39(10), 8986–8992 (2012)

    CrossRef  Google Scholar 

  25. Laine, T., Korpinen, K., Hellqvist, M.: Simulations Approaches to Risk, Efficiency, and Liquidity Usage in Payment Systems. IGI Global (2013)

    Google Scholar 

  26. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

    Google Scholar 

  27. Leinonen, H., Soramäki, K.: Optimising Liquidity Usage and Settlement Speed in Payment Systems. In: Leinonen, H. (ed.) Liquidity, risks and speed in payment and settlement systems - a simulation approach, Proceedings from the Bank of Finland Payment and Settlement System Seminars 2005, pp. 115–148 (2005)

    Google Scholar 

  28. León, C., Pérez, J.: Assessing financial market infrastructures’ systemic importance with authority and hub centrality. J. Financ. Mark. Infrastruct. 2, 67–87 (2014)

    CrossRef  Google Scholar 

  29. Maes, S., Tuyls, K., Vanschoenwinkel, B., Manderick, B.: Credit card fraud detection using Bayesian and neural networks. In: Proceedings of the 1st International Naiso Congress on Neuro Fuzzy Technologies, pp. 261–270 (2002)

    Google Scholar 

  30. Pröpper, M., van Lelyveld, I., Heijmans, R.: Network dynamics of TOP payments. J. Financ. Mark. Infrastruct. 1(3), 3–29 (2013)

    CrossRef  Google Scholar 

  31. Quah, J.T., Sriganesh, M.: Real-time credit card fraud detection using computational intelligence. Expert Syst. Appl. 35(4), 1721–1732 (2008)

    CrossRef  Google Scholar 

  32. Sánchez, D., Vila, M., Cerda, L., Serrano, J.M.: Association rules applied to credit card fraud detection. Expert Syst. Appl. 36(2), 3630–3640 (2009)

    CrossRef  Google Scholar 

  33. Squartini, T., van Lelyveld, I., Garlaschelli, D.: Early-warning signals of topological collapse in interbank networks. Sci. Rep. 3(3357), 1–9 (2013)

    Google Scholar 

  34. Srivastava, A., Kundu, A., Sural, S., Majumdar, A.: Credit card fraud detection using hidden Markov model. IEEE Trans. Dependable Secur. Comput. 5(1), 37–48 (2008)

    CrossRef  Google Scholar 

  35. Tóth, L., Gosztolya, G.: Replicator neural networks for outlier modeling in segmental speech recognition. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 996–1001. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28647-9_164

    CrossRef  Google Scholar 

  36. Triepels, R., Daniels, H., Heijmans, R.: Anomaly detection in real-time gross settlement systems. In: Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, pp. 433–441. INSTICC, ScitePress (2017)

    Google Scholar 

  37. Werbos, P.J.: Applications of advances in nonlinear sensitivity analysis. In: Drenick, R.F., Kozin, F. (eds.) System Modeling and Optimization. LNCIS, vol. 38, pp. 762–770. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0006203

    CrossRef  Google Scholar 

  38. Zaslavsky, V., Strizhak, A.: Credit card fraud detection using self-organizing maps. Inf. Secur. 18, 48 (2006)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Ron Berndsen and Richard Heuver for their helpful suggestions and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Triepels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Triepels, R., Daniels, H., Heijmans, R. (2018). Detection and Explanation of Anomalous Payment Behavior in Real-Time Gross Settlement Systems. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds) Enterprise Information Systems. ICEIS 2017. Lecture Notes in Business Information Processing, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-93375-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93375-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93374-0

  • Online ISBN: 978-3-319-93375-7

  • eBook Packages: Computer ScienceComputer Science (R0)