Multi-scale Resolution of Cognitive Architectures: A Paradigm for Simulating Minds and Society

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10899)


We put forth a thesis, the Resolution Thesis, that suggests that cognitive science and generative social science are interdependent and should thus be mutually informative. The thesis invokes a paradigm, the reciprocal constraints paradigm, that was designed to leverage the interdependence between the social and cognitive levels of scale for the purpose of building cognitive and social simulations with better resolution. In addition to explaining our thesis, we provide the current research context, a set of issues with the thesis and some parting thoughts to provoke discussion. We see this work as an initial step to motivate both social and cognitive sciences in a new direction, one that represents some unity of purpose and interdependence of theory and methods.


Symbolic Cognitive Architecture General Social Science Resolution Thesis Social Simulation Current Research Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sun, R.: Cognition and Multi-agent Interaction: From Cognitive Modeling to Social Simulation. Cambridge University Press, Cambridge (2006)Google Scholar
  2. 2.
    Prietula, M., Carley, K., Gasser, L.: Simulating Organizations: Computational Models of Institutions and Groups, vol. 1. The MIT Press, Cambridge (1998)Google Scholar
  3. 3.
    Vallacher, R.R., Read, S.J., Nowak, A.: Computational Social Psychology. Routledge, Abingdon (2017)Google Scholar
  4. 4.
    Simon, H.A.: Bounded rationality and organizational learning. Organ. Sci. 2(1), 125–134 (1991)CrossRefGoogle Scholar
  5. 5.
    Anderson, J.R.: How can the Human Mind Occur in the Physical Universe?. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  6. 6.
    Stocco, A., Lebiere, C., Anderson, J.R.: Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol. Rev. 117(2), 541–574 (2010)CrossRefGoogle Scholar
  7. 7.
    Gonzalez, C., Lerch, F.J., Lebiere, C.: Instance-based learning in dynamic decision making. Cognit. Sci. 27(4), 591–635 (2003)CrossRefGoogle Scholar
  8. 8.
    Stocco, A.: A biologically plausible action selection system for cognitive architectures: implications of basal ganglia anatomy for learning and decision-making models. Cognit. Sci. 42, 457–490 (2018)CrossRefGoogle Scholar
  9. 9.
    Stocco, A., Murray, N.L., Yamasaki, B.L., Renno, T.J., Nguyen, J., Prat, C.S.: Individual differences in the simon effect are underpinned by differences in the competitive dynamics in the basal ganglia: An experimental verification and a computational model. Cognition 164, 31–45 (2017)CrossRefGoogle Scholar
  10. 10.
    West, R.L., Lebiere, C.: Simple games as dynamic, coupled systems: randomness and other emergent properties. Cognit. Syst. Res. 1(4), 221–239 (2001)CrossRefGoogle Scholar
  11. 11.
    Lebiere, C., Gray, R., Salvucci, D., West, R.: Choice and learning under uncertainty: a case study in baseball batting. In: Proceedings of the 25th Annual Meeting of the Cognitive Science Society, pp. 704–709. Erlbaum, Mahwah (2003)Google Scholar
  12. 12.
    Lebiere, C., Wallach, D., West, R.: A memory-based account of the prisoner’s dilemma and other 2x2 games. In: Proceedings of International Conference on Cognitive Modeling, pp. 185–193. Universal Press, NL (2000)Google Scholar
  13. 13.
    West, R.L., Stewart, T.C., Lebiere, C., Chandrasekharan, S.: Stochastic resonance in human cognition: Act-r vs. game theory, associative neural networks, recursive neural networks, q-learning, and humans. In: Proceedings of the 27th Annual Conference of the Cognitive Science Society, pp. 2353–2358. Lawrence Erlbaum Associates, Mahwah (2005)Google Scholar
  14. 14.
    Romero, O., Lebiere, C.: Simulating network behavioral dynamics by using a multi-agent approach driven by act-r cognitive architecture. In: Proceedings of the Behavior Representation in Modeling and Simulation Conference (2014)Google Scholar
  15. 15.
    Reitter, D., Lebiere, C.: Social cognition: memory decay and adaptive information filtering for robust information maintenance. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 242–248 (2012)Google Scholar
  16. 16.
    Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)Google Scholar
  17. 17.
    Axelrod, R., et al.: A model of the emergence of new political actors. In: Artificial societies The Computer Simulation of Social Life, pp. 19–39 (1995)Google Scholar
  18. 18.
    Epstein, J.M.: Modeling civil violence: an agent-based computational approach. Proc. Natl. Acad. Sci. 99(suppl 3), 7243–7250 (2002)CrossRefGoogle Scholar
  19. 19.
    Epstein, J.M.: Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science. Princeton University Press, Princeton (2014)Google Scholar
  20. 20.
    Caillou, P., Gaudou, B., Grignard, A., Truong, C.Q., Taillandier, P.: A simple-to-use BDI architecture for agent-based modeling and simulation. In: Jager, W., Verbrugge, R., Flache, A., de Roo, G., Hoogduin, L., Hemelrijk, C. (eds.) Advances in Social Simulation 2015. AISC, vol. 528, pp. 15–28. Springer, Cham (2017). Scholar
  21. 21.
    Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Enhancing netlogo to simulate BDI communicating agents. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 263–275. Springer, Heidelberg (2008). Scholar
  22. 22.
    Malleson, N., See, L., Evans, A., Heppenstall, A.: Implementing comprehensive offender behaviour in a realistic agent-based model of burglary. Simulation 88(1), 50–71 (2012)CrossRefGoogle Scholar
  23. 23.
    Pires, B., Crooks, A.T.: Modeling the emergence of riots: a geosimulation approach. Comput. Environ. Urban Syst. 61, 66–80 (2017)CrossRefGoogle Scholar
  24. 24.
    Kennedy, W.G.: Modelling human behaviour in agent-based models. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 167–179. Springer, Heidelberg (2012). Scholar
  25. 25.
    Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: ICMAS, vol. 95, pp. 312–319 (1995)Google Scholar
  26. 26.
    Schmidt, B.: The modelling of human behaviour: The PECS reference models. SCS-Europe BVBA (2000)Google Scholar
  27. 27.
    West, R., Nagy, N., Karimi, F., Dudzik, K.: Detecting macro cognitive influences in micro cognition: using micro strategies to evaluate the SGOMS macro architecture as implemented in ACT-R. In: Proceedings of the 15th International Conference on Cognitive Modeling, pp. 235–236 (2017)Google Scholar
  28. 28.
    Lebiere, C., Best, B.J.: From microcognition to macrocognition: architectural support for adversarial behavior. J. Cognit. Eng. Decis. Mak. 3(2), 176–193 (2009)CrossRefGoogle Scholar
  29. 29.
    Lebiere, C., Archer, R., Best, B., Schunk, D.: Modeling pilot performance with an integrated task network and cognitive architecture approach. Hum. Perform. Model. Aviat. (2008)Google Scholar
  30. 30.
    Ritter, F., Haynes, S.R., Cohen, M., Howes, A., John, B., Best, B., Lebiere, C., Jones, R.M., Crossman, J., Lewis, R.L., St. Amant, R., McBride, S.P., Urbas, L., Leuchter, S., Vera, A.: High-level behavior representation languages revisited. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 242–248 (2012)Google Scholar
  31. 31.
    Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)Google Scholar
  32. 32.
    Anderson, J.R.: Spanning seven orders of magnitude: a challenge for cognitive modeling. Cognit. Sci. 26(1), 85–112 (2002)CrossRefGoogle Scholar
  33. 33.
    Huberman, B.A., Pirolli, P., Pitkow, J.E., Lukose, R.M.: Strong regularities in world wide web surfing. Science 280(5360), 95–97 (1998)CrossRefGoogle Scholar
  34. 34.
    Fu, W.T., Pirolli, P.: Snif-act: a model of user navigation on the world wide web. Hum. Comput. Interact. 22(4), 355–412 (2007)Google Scholar
  35. 35.
    Chi, E.H., Rosien, A., Suppattanasiri, G., Williams, A., Royer, C., Chow, C., Cousins, S.: The bloodhound project: automating discovery of web usability issues using the infoscent simulator. In: ACM Conference on Human Factors in Computing Systems, CHI Letters, vol. 5, no. 1, pp. 505–512 (2003)Google Scholar
  36. 36.
    Middleton, F.A., Strick, P.L.: The temporal lobe is a target of output from the basal ganglia. Proc. Natl. Acad. Sci. 93(16), 8683–8687 (1996)CrossRefGoogle Scholar
  37. 37.
    Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275(5306), 1593–1599 (1997)CrossRefGoogle Scholar
  38. 38.
    Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1988)Google Scholar
  39. 39.
    Bunney, B.S., Chiodo, L.A., Grace, A.A.: Midbrain dopamine system electrophysiological functioning: a review and new hypothesis. Synapse 9(2), 79–94 (1991)CrossRefGoogle Scholar
  40. 40.
    Schultz, W.: Getting formal with dopamine and reward. Neuron 36(2), 241–263 (2002)CrossRefGoogle Scholar
  41. 41.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  42. 42.
    Miller, J.H., Page, S.E.: Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton University Press, Princeton (2009)Google Scholar
  43. 43.
    Gigerenzer, G., Todd, P.M., ABC Research Group, et al.: Simple Heuristics That Make Us Smart. Oxford University Press, Oxford (1999)Google Scholar
  44. 44.
    Reitter, D., Lebiere, C.: Accountable modeling in ACT-UP, a scalable, rapid-prototyping ACT-R implementation. In: Proceedings of the 2010 International Conference on Cognitive Modeling (2010)Google Scholar
  45. 45.
    Simon, H.A.: The architecture of complexity. Proc. Am. Philos. Soc. 106(6), 467–482 (1962)Google Scholar
  46. 46.
    Anderson, P.W.: More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177(4047), 393–396 (1972)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biocomplexity Institute of Virginia TechBlacksburgUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.University of WashingtonSeattleUSA
  4. 4.Institute for Human and Machine CognitionPensacolaUSA
  5. 5.George Mason UniversityFairfaxUSA

Personalised recommendations