The Experiment from a Statistical Perspective

  • Joachim Weimann
  • Jeannette Brosig-Koch
Part of the Springer Texts in Business and Economics book series (STBE)


The statistical analysis of the data obtained in an experiment is an elementary part of an experimental investigation. It makes it possible both to interpret the results of an experiment in an appropriate way and to support the experimental examination of the research question. It also allows the experimental setup to be improved before the actual experiment commences. Our main objective is to develop a broad guide to the use of statistical methods that systematizes and presents the content of the most important classes of methods and identifies the most important prerequisites for their application.


  1. Bliese, P., & Ployhart, E. E. (2002). Growth modeling using random coefficient models: Model building, testing, and illustrations. Organizational Research Methods, 5(4), 362–387.CrossRefGoogle Scholar
  2. Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135.CrossRefGoogle Scholar
  3. Bortz, J., & Lienert, G. A. (2008). Kurzgefasste Statistik für die klinische Forschung: Leitfaden für die verteilungsfreie Analyse kleiner Stichproben. 3. Auflage. Heidelberg: Springer.Google Scholar
  4. Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters: design, innovation, and discovery (2nd ed.). New Jersey: John Wiley & Sons.Google Scholar
  5. Brosig-Koch, J., Helbach, C., Ockenfels, A., & Weimann, J. (2011). Still different after all these years: Solidarity behavior in East and West Germany. Journal of Public Economics, 95(11–12), 1373–1376.CrossRefGoogle Scholar
  6. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  7. Conover, W. J. (1972). A Kolmogorov goodness-of-fit test for discontinuous distributions. Journal of the American Statistical Association, 67(339), 591–596.CrossRefGoogle Scholar
  8. Conover, W. J. (1973). On methods of handling ties in the Wilcoxon Signed-Rank test. Journal of the American Statistical Association, 68(344), 985–988.CrossRefGoogle Scholar
  9. Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). New York: John Wiley & Sons.Google Scholar
  10. Cox, J. C., Friedman, D., & Gjerstad, S. (2007). A tractable model of reciprocity and fairness. Games and Economic Behavior, 59, 17–45.CrossRefGoogle Scholar
  11. Cumming, G. (2013). The new statistics: why and how. Psychological Science, 25(1), 7–29.CrossRefGoogle Scholar
  12. Davis, D. D., & Holt, C. A. (1993). Experimental economics. Princeton: Princeton University Press.Google Scholar
  13. Dufwenberg, M., & Kirchsteiger, G. (2004). A theory of sequential reciprocity. Games and Economic Behavior, 47, 268–298.CrossRefGoogle Scholar
  14. Ellis, P.D. (2010). The essential guide to effect sizes. Cambridge et al.: Cambridge University Press.Google Scholar
  15. Falk, A., & Fischbacher, U. (2006). A theory of reciprocity. Games and Economic Behavior, 54(2), 293–315.CrossRefGoogle Scholar
  16. Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd ed.). New York: John Wiley & Sons.CrossRefGoogle Scholar
  17. Griffiths, W. E., Hill, R. C., & Judge, G. G. (1993). Learning and practicing econometrics. New Jersey: John Wiley & Sons.Google Scholar
  18. Gujarati, D., & Porter, D. (2008). Basic econometrics (5th ed.). Boston: McGraw-Hill.Google Scholar
  19. Hilbe, J. M. (2009). Logistic regression models. London: Chapman & Hall/CRC.CrossRefGoogle Scholar
  20. Hoenig, J. M., & Heisey, D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis. The American Statistician, 55(1), 19–24.CrossRefGoogle Scholar
  21. Hoffmann, S., Mihm, B., & Weimann, J. (2015). To commit or not to commit? An experimental investigation of pre-commitments in bargaining situations with asymmetric information. Journal of Public Economics, 121, 95–105.CrossRefGoogle Scholar
  22. Kanji, G. K. (2006). 100 statistical tests (3rd ed.). London: Sage Publications Ltd.CrossRefGoogle Scholar
  23. Kennedy, P. (2008). A guide to econometrics (6th ed.). Malden: Wiley-Blackwell.Google Scholar
  24. Lee, Y., & Nelder, J. A. (2004). Conditional and marginal models: another view. Statistical Science, 19(2), 219–228.CrossRefGoogle Scholar
  25. Lenth, R. (2000). Two sample-size practices that I Don’t Recommend. Comments from panel discussion at the 2000 Joint Statistical Meetings in Indianapolis,
  26. Lenth, R. (2001). Some practical guidelines for effective sample size determination. The American Statistician, 55(3), 187–193.CrossRefGoogle Scholar
  27. Lenth, R. (2007). Post Hoc power: Tables and commentary. Technical Report No. 378, University of Iowa, Department of Statistics and Actuarial Science,
  28. Leonhart, R. (2008). Psychologische Methodenlehre/Statistik. München: UTB.Google Scholar
  29. Levine, D. K. (1998). Modeling altruism and spitefulness in experiments. Review of Economic Dynamics, 1(3), 593–622.CrossRefGoogle Scholar
  30. Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 78, 13–22.CrossRefGoogle Scholar
  31. Marascuilo, L. A., & McSweeney, M. (1977). Nonparametric and distribution-free methods for the social sciences. Monterey: Brooks/Cole.Google Scholar
  32. Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46, 68–78.CrossRefGoogle Scholar
  33. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Boca Raton: Chapman and Hall.CrossRefGoogle Scholar
  34. Morris, M. (2010). Design of experiments – an introduction based on linear models. London: Chapman and Hall.Google Scholar
  35. Murphy, K. R., Myors, B., & Wolach, A. (2014). Statistical power analysis: A simple and general model for traditional and modern hypothesis tests (4th ed.). New York: Routledge.CrossRefGoogle Scholar
  36. Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A (General), 135(3), 370–384.CrossRefGoogle Scholar
  37. Nowak, M. A., & Siegmund, K. (2005). Evolution of indirect reciprocity. Nature, 437, 1291–1298.CrossRefGoogle Scholar
  38. Rabe-Hesketh, S., & Skrondal, A. (2010). Generalized linear mixed models. In P. Peterson, E. Baker, & B. McGaw (Eds.), International encyclopedia of education (pp. 171–177). Amsterdam: Elsevier.Google Scholar
  39. Rabe-Hesketh, S., & Skrondal, A. (2004). Generalized latent variable modelling: Multilevel, longitudinal, and structural equation models. Boca Raton: Chapman & Hall/CRC.Google Scholar
  40. Rabin, M. (1993). Incorporating fairness into game theory and economics. American Economic Review, 83, 1281–1302.Google Scholar
  41. Sheskin, D. J. (2000). Parametric and nonparametric statistical procedures. Boca Raton: CRC Press.Google Scholar
  42. Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York: McGraw-Hill.Google Scholar
  43. Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society. Series B (Methodological), 13(2), 238–241.CrossRefGoogle Scholar
  44. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis – modeling change and event occurrence. Oxford: Oxford University Press.CrossRefGoogle Scholar
  45. von Auer, L. (2016). Ökonometrie: Eine Einführung. 7. Auflage. Berlin, Heidelberg: Gabler Verlag.Google Scholar
  46. Wu, C. F. J., & Hamada, M. S. (2009). Experiments: Planning, analysis, and optimization (2nd ed.). New York: John Wiley & Sons.Google Scholar
  47. Zar, J. H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River: Prentice Hall.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joachim Weimann
    • 1
  • Jeannette Brosig-Koch
    • 2
  1. 1.Otto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.University of Duisburg-EssenEssenGermany

Personalised recommendations