How to Quantify Graph De-anonymization Risks

  • Wei-Han Lee
  • Changchang Liu
  • Shouling Ji
  • Prateek Mittal
  • Ruby B. Lee
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 867)


An increasing amount of data are becoming publicly available over the Internet. These data are released after applying some anonymization techniques. Recently, researchers have paid significant attention to analyzing the risks of publishing privacy-sensitive data. Even if data anonymization techniques were applied to protect privacy-sensitive data, several de-anonymization attacks have been proposed to break their privacy. However, no theoretical quantification for relating the data vulnerability against de-anonymization attacks and the data utility that is preserved by the anonymization techniques exists.

In this paper, we first address several fundamental open problems in the structure-based de-anonymization research by establishing a formal model for privacy breaches on anonymized data and quantifying the conditions for successful de-anonymization under a general graph model. To the best of our knowledge, this is the first work on quantifying the relationship between anonymized utility and de-anonymization capability. Our quantification works under very general assumptions about the distribution from which the data are drawn, thus providing a theoretical guide for practical de-anonymization/anonymization techniques.

Furthermore, we use multiple real-world datasets including a Facebook dataset, a Collaboration dataset, and two Twitter datasets to show the limitations of the state-of-the-art de-anonymization attacks. From these experimental results, we demonstrate the ineffectiveness of previous de-anonymization attacks and the potential of more powerful de-anonymization attacks in the future, by comparing the theoretical de-anonymization capability proposed by us with the practical experimental results of the state-of-the-art de-anonymization methods.


Structure-based de-anonymization attacks Anonymization utility De-anonymization capability Theoretical bounds 


  1. 1.
    Lee, W.-H., Liu, C., Ji, S., Mittal, P., Lee, R.B.: Quantification of de-anonymization risks in social networks. In: Information Systems Security and Privacy (ICISSP), SCITEPRESS (2017)Google Scholar
  2. 2.
    Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social networks. Computer Science Department Faculty Publication Series (2007)Google Scholar
  3. 3.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD (2008)Google Scholar
  4. 4.
    Pedarsani, P., Grossglauser, M.: On the privacy of anonymized networks. In: SIGKDD (2011)Google Scholar
  5. 5.
    Srivatsa, M., Hicks, M.: Deanonymizing mobility traces: using social network as a side-channel. In: CCS (2012)Google Scholar
  6. 6.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: WWW (2007)Google Scholar
  7. 7.
    Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. IEEE S&P (2008)Google Scholar
  8. 8.
    Narayanan, A.: De-anonymizing social networks. In: IEEE S&P (2009)Google Scholar
  9. 9.
    Ji, S., Li, W., Srivatsa, M., Beyah, R.: Structural data de-anonymization: quantification, practice, and implications. In: CCS (2014)Google Scholar
  10. 10.
    Nilizadeh, S., Kapadia, A., Ahn, Y.-Y.: Community-enhanced de-anonymization of online social networks. In: CCS (2014)Google Scholar
  11. 11.
    Lee, W.-H., Liu, C., Ji, S., Mittal, P., Lee, R.: Blind de-anonymization attacks using social networks. In: Proceedings of the 16th Workshop on Privacy in the Electronic Society. ACM (2017)Google Scholar
  12. 12.
    Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-identification in anonymized social networks. VLDB Endowment 1, 102–114 (2008)CrossRefGoogle Scholar
  13. 13.
    Sharad, K., Danezis, G.: An automated social graph de-anonymization technique. In: Proceedings of the 13th Workshop on Privacy in the Electronic Society. ACM (2014)Google Scholar
  14. 14.
    Sharad, K., Danezis, G.: De-anonymizing D4D datasets. In: Workshop on Hot Topics in Privacy Enhancing Technologies (2013)Google Scholar
  15. 15.
    Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Discovering missing me edges across social networks. Inf. Sci. 319, 18–37 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. In: ACM Transactions on Knowledge Discovery from Data (2007)CrossRefGoogle Scholar
  17. 17.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). Scholar
  18. 18.
    Liu, C., Chakraborty, S., Mittal, P.: Dependence makes you vulnerable: differential privacy under dependent tuples. In: NDSS (2016)Google Scholar
  19. 19.
    Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: IMC (2011)Google Scholar
  20. 20.
    Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. (CSUR) 45(4), 43 (2013)CrossRefGoogle Scholar
  21. 21.
    Pedarsani, P., Figueiredo, D.R., Grossglauser, M.: A Bayesian method for matching two similar graphs without seeds. In: Allerton (2013)Google Scholar
  22. 22.
    Ji, S., Li, W., Mittal, P., Hu, X., Beyah, R.: SecGraph: a uniform and open-source evaluation system for graph data anonymization and de-anonymization. In: USENIX Security Symposium (2015)Google Scholar
  23. 23.
    Erdős, P., Rényi, A.: On the evolution of random graphs. In: Selected Papers of Alfréd Rényi (1976)Google Scholar
  24. 24.
    Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  25. 25.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fabiana, C., Garetto, M., Leonardi, E.: De-anonymizing scale-free social networks by percolation graph matching. In: INFOCOM (2015)Google Scholar
  27. 27.
    Ji, S., Li, W., Gong, N.Z., Mittal, P., Beyah, R.: On your social network de-anonymizablity: quantification and large scale evaluation with seed knowledge. In: NDSS (2015)Google Scholar
  28. 28.
    Korula, N., Lattanzi, S.: An efficient reconciliation algorithm for social networks. Proc. VLDB Endowment 7, 377–388 (2014)CrossRefGoogle Scholar
  29. 29.
    Pham, H., Shahabi, C., Liu, Y.: EBM: an entropy-based model to infer social strength from spatiotemporal data. In: SIGMOD (2013)Google Scholar
  30. 30.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mittal, P., Papamanthou, C., Song, D.: Preserving link privacy in social network based systems. In: NDSS (2013)Google Scholar
  32. 32.
    Liu, C., Mittal, P.: LinkMirage: enabling privacy-preserving analytics on social relationships. In: NDSS (2016)Google Scholar
  33. 33.
    Andersen, R., Borgs, C., Chayes, J., Feige, U., Flaxman, A., Kalai, A., Mirrokni, V., Tennenholtz, M.: Trust-based recommendation systems: an axiomatic approach. In: WWW (2008)Google Scholar
  34. 34.
    Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: SybilLimit: a near-optimal social network defense against sybil attacks. In: IEEE S&P (2008)Google Scholar
  35. 35.
    Mittal, P., Wright, M., Borisov, N.: Pisces: anonymous communication using social networks. In: NDSS (2013)Google Scholar
  36. 36.
    Newman, M.E.: The structure of scientific collaboration networks. Proc. Nat. Acad. Sci. 98, 404–409 (2001)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: ACM Workshop on Online Social Networks (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wei-Han Lee
    • 1
  • Changchang Liu
    • 1
  • Shouling Ji
    • 2
    • 3
  • Prateek Mittal
    • 1
  • Ruby B. Lee
    • 1
  1. 1.Princeton UniversityPrincetonUSA
  2. 2.Zhejiang UniversityHangzhouChina
  3. 3.Georgia TechAtlantaUSA

Personalised recommendations