Skip to main content

Liquid Biopsy in Prostate Cancer: Circulating Tumor Cells and Beyond

  • Chapter
  • First Online:
Genitourinary Cancers

Part of the book series: Cancer Treatment and Research ((CTAR,volume 175))

Abstract

Prostate cancer is a common malignancy impacting countless men without curative options in the advanced state. Numerous therapies have been introduced in recent years improving survival and symptom control, yet optimal methods for predicting or monitoring response have not been developed. In the era of precision medicine, characterization of individual cancers is necessary to inform treatment decisions. Liquid biopsies, through evaluation of various blood-based analytes, provide a method of patient evaluation with potential applications in virtually all disease states. In this review, we will describe current approaches with a particular focus on demonstrated clinical utility in the evaluation and management of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Aizer AA, Chen M-H, Hattangadi J, D’Amico AV (2014) Initial management of prostate-specific antigen-detected, low-risk prostate cancer and the risk of death from prostate cancer. BJU Int 113(1):43–50

    Article  PubMed  Google Scholar 

  3. Simpkin AJ, Tilling K, Martin RM, Lane JA, Hamdy FC, Holmberg L et al (2015) Systematic review and meta-analysis of factors determining change to radical treatment in active surveillance for localized prostate cancer. Eur Urol 67(6):993–1005

    Article  PubMed  Google Scholar 

  4. Crawford ED, Bennett CL, Andriole GL, Garnick MB, Petrylak DP (2013) The utility of prostate-specific antigen in the management of advanced prostate cancer. BJU Int 112(5):548–560

    Article  CAS  PubMed  Google Scholar 

  5. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  CAS  PubMed  Google Scholar 

  6. Nome R, Hernes E, Bogsrud TV, Bjøro T, Fosså SD (2015) Changes in prostate-specific antigen, markers of bone metabolism and bone scans after treatment with radium-223. Scand J Urol. 49(3):211–217

    Article  CAS  PubMed  Google Scholar 

  7. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  8. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  CAS  PubMed  Google Scholar 

  9. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res Off J Am Assoc Cancer Res. 10(20):6897–6904

    Article  Google Scholar 

  10. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  11. Shen MM (2015) Cancer: the complex seeds of metastasis. Nature 520(7547):298–299

    Article  CAS  PubMed  Google Scholar 

  12. Alix-Panabières C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14(1):57–62

    Article  PubMed  Google Scholar 

  13. Ashworth T (1869) A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J 14:146–147

    Google Scholar 

  14. Ignatiadis M, Lee M, Jeffrey SS (2015) Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res Off J Am Assoc Cancer Res 21(21):4786–4800

    Article  CAS  Google Scholar 

  15. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  16. Mikolajczyk SD, Millar LS, Tsinberg P, Coutts SM, Zomorrodi M, Pham T et al (2011) Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J Oncol 2011:252361

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 14(19):6302–6309

    Article  CAS  Google Scholar 

  18. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res Off J Am Assoc Cancer Res 12(14 Pt 1):4218–4224

    Article  CAS  Google Scholar 

  19. Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 26(19):3213–3221

    Article  Google Scholar 

  20. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta V, Jafferji I, Garza M, Melnikova VO, Hasegawa DK, Pethig R et al (2012) ApoStreamTM, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 6(2):24133

    Article  PubMed  Google Scholar 

  22. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10(3):374–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Epic Sciences [Internet]. Retrieved from http://www.epicsciences.com/what-we-do/technology-overview

  24. Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, Varshavskaya P et al (2015) High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer 6(15):360

    Article  CAS  Google Scholar 

  25. Ring A, Mineyev N, Zhu W, Park E, Lomas C, Punj V et al (2015) EpCAM based capture detects and recovers circulating tumor cells from all subtypes of breast cancer except claudin-low. Oncotarget 6(42):44623–44634

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davis JW, Nakanishi H, Kumar VS, Bhadkamkar VA, McCormack R, Fritsche HA et al (2008) Circulating tumor cells in peripheral blood samples from patients with increased serum prostate specific antigen: initial results in early prostate cancer. J Urol 179(6):2187–2191; discussion 2191

    Article  PubMed  Google Scholar 

  27. Thalgott M, Rack B, Maurer T, Souvatzoglou M, Eiber M, Kreß V et al (2013) Detection of circulating tumor cells in different stages of prostate cancer. J Cancer Res Clin Oncol 139(5):755–763

    Article  PubMed  Google Scholar 

  28. Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L et al (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2(25):25ra23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kolostova K, Broul M, Schraml J, Cegan M, Matkowski R, Fiutowski M et al (2014) Circulating tumor cells in localized prostate cancer: isolation, cultivation in vitro and relationship to T-stage and Gleason score. Anticancer Res 34(7):3641–3646

    PubMed  Google Scholar 

  30. Pal SK, He M, Wilson T, Liu X, Zhang K, Carmichael C et al (2015) Detection and phenotyping of circulating tumor cells in high-risk localized prostate cancer. Clin Genitourin Cancer 13(2):130–136

    Article  CAS  PubMed  Google Scholar 

  31. Meyer CP, Pantel K, Tennstedt P, Stroelin P, Schlomm T, Heinzer H et al (2016) Limited prognostic value of preoperative circulating tumor cells for early biochemical recurrence in patients with localized prostate cancer. Urol Oncol 34(5):235.e11–e16

    Article  Google Scholar 

  32. Okegawa T, Nutahara K, Higashihara E (2008) Immunomagnetic quantification of circulating tumor cells as a prognostic factor of androgen deprivation responsiveness in patients with hormone naive metastatic prostate cancer. J Urol 180(4):1342–1347

    Article  PubMed  Google Scholar 

  33. Goodman OB, Symanowski JT, Loudyi A, Fink LM, Ward DC, Vogelzang NJ (2011) Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer. Clin Genitourin Cancer 9(1):31–38

    Article  PubMed  Google Scholar 

  34. Sweeney CJ, Chen Y-H, Carducci M, Liu G, Jarrard DF, Eisenberger M et al (2015) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373(8):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR et al (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet Lond Engl 387(10024):1163–1177

    Article  CAS  Google Scholar 

  36. Danila DC, Anand A, Sung CC, Heller G, Leversha MA, Cao L et al (2011) TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration-resistant prostate cancer patients treated with abiraterone acetate. Eur Urol 60(5):897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goldkorn A, Ely B, Quinn DI, Tangen CM, Fink LM, Xu T et al (2014) Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 32(11):1136–1142

    Article  CAS  Google Scholar 

  38. Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X et al (2015) Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 33(12):1348–1355

    Article  CAS  Google Scholar 

  39. Berger VW (2004) Does the Prentice criterion validate surrogate endpoints? Stat Med 23(10):1571–1578

    Article  PubMed  Google Scholar 

  40. Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK et al (2011) Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 71(18):6019–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crespo M, van Dalum G, Ferraldeschi R, Zafeiriou Z, Sideris S, Lorente D et al (2015) Androgen receptor expression in circulating tumour cells from castration-resistant prostate cancer patients treated with novel endocrine agents. Br J Cancer 112(7):1166–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyamoto DT, Lee RJ, Stott SL, Ting DT, Wittner BS, Ulman M et al (2012) Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov 2(11):995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z et al (2015) Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci Rep 7(5):7654

    Article  CAS  Google Scholar 

  44. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Zhu Y et al (2017) Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J Clin Oncol Off J Am Soc Clin Oncol JCO2016701961

    Google Scholar 

  46. Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA et al (2016) Association of AR-V7 on Circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol

    Google Scholar 

  47. Bernemann C, Schnoeller TJ, Luedeke M, Steinestel K, Boegemann M, Schrader AJ et al (2017) Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur Urol 71(1):1–3

    Article  CAS  PubMed  Google Scholar 

  48. Scher HI, Graf RP, Schreiber NA, McLaughlin B, Lu D, Louw J et al (2017) Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur Urol 71(6):874–882

    Article  CAS  PubMed  Google Scholar 

  49. Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT et al (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349(6254):1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang R, Lu Y-T, Ho H, Li B, Chen J-F, Lin M et al (2015) A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget 6(42):44781–44793

    PubMed  PubMed Central  Google Scholar 

  52. Kidess E, Jeffrey SS (2013) Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? Genome Med 5(8):70

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alix-Panabières C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6(5):479–491

    Article  PubMed  CAS  Google Scholar 

  54. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mouliere F, Rosenfeld N (2015) Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci U S A 112(11):3178–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17(4):223–238

    Article  CAS  PubMed  Google Scholar 

  57. Dawson S-J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S-F et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209

    Article  CAS  PubMed  Google Scholar 

  58. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990

    Article  CAS  PubMed  Google Scholar 

  59. Tug S, Helmig S, Deichmann ER, Schmeier-Jürchott A, Wagner E, Zimmermann T et al (2015) Exercise-induced increases in cell free DNA in human plasma originate predominantly from cells of the haematopoietic lineage. Exerc Immunol Rev 21:164–173

    PubMed  Google Scholar 

  60. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581(5):795–799

    Article  CAS  PubMed  Google Scholar 

  61. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61(1):112–123

    Article  CAS  PubMed  Google Scholar 

  62. Ignatiadis M, Dawson S-J (2014) Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann Oncol Off J Eur Soc Med Oncol 25(12):2304–2313

    Article  CAS  Google Scholar 

  63. Yao W, Mei C, Nan X, Hui L (2016) Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study. Gene 590(1):142–148

    Article  CAS  PubMed  Google Scholar 

  64. Kienel A, Porres D, Heidenreich A, Pfister D (2015) cfDNA as a prognostic marker of response to taxane based chemotherapy in patients with prostate cancer. J Urol 194(4):966–971

    Article  CAS  PubMed  Google Scholar 

  65. Kwee S, Song M-A, Cheng I, Loo L, Tiirikainen M (2012) Measurement of circulating cell-free DNA in relation to 18F-fluorocholine PET/CT imaging in chemotherapy-treated advanced prostate cancer. Clin Transl Sci 5(1):65–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Schwarzenbach H, Hoon DSB, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437

    Article  CAS  PubMed  Google Scholar 

  67. Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K et al (2013) Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med 5(4):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmidt LJ, Tindall DJ (2013) Androgen receptor: past, present and future. Curr Drug Targets 14(4):401–407

    Article  CAS  PubMed  Google Scholar 

  69. Salvi S, Casadio V, Conteduca V, Burgio SL, Menna C, Bianchi E et al (2015) Circulating cell-free AR and CYP17A1 copy number variations may associate with outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone. Br J Cancer 112(10):1717–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 21(10):2315–2324

    Article  CAS  Google Scholar 

  71. Romanel A, Gasi Tandefelt D, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D et al (2015) Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 7(312):312re10

    Google Scholar 

  72. Wyatt AW, Azad AA, Volik SV, Annala M, Beja K, McConeghy B et al (2016) Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2(12):1598–1606

    Article  PubMed  PubMed Central  Google Scholar 

  73. De Laere B, van Dam P-J, Whitington T, Mayrhofer M, Diaz EH, Van den Eynden G et al (2017) Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns. Eur Urol

    Google Scholar 

  74. Olmos D, Brewer D, Clark J, Danila DC, Parker C, Attard G et al (2012) Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol 13(11):1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ross RW, Galsky MD, Scher HI, Magidson J, Wassmann K, Lee G-SM et al (2012) A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol 13(11):1105–1113

    Article  CAS  PubMed  Google Scholar 

  76. Liu X, Ledet E, Li D, Dotiwala A, Steinberger A, Feibus A et al (2016) A whole blood assay for AR-V7 and AR(v567es) in patients with prostate cancer. J Urol 196(6):1758–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin H-M, Castillo L, Mahon KL, Chiam K, Lee BY, Nguyen Q et al (2014) Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer 110(10):2462–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J et al (2016) Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Goldstein A, Valda Toro P, Lee J, Silberstein JL, Nakazawa M, Waters I et al (2017) Detection fidelity of AR mutations in plasma derived cell-free DNA. Oncotarget

    Google Scholar 

  81. Malapelle U, Sirera R, Jantus-Lewintre E, Reclusa P, Calabuig-Fariñas S, Blasco A et al (2017) Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer. Expert Rev Mol Diagn 17(3):209–215

    Article  CAS  PubMed  Google Scholar 

  82. Minciacchi VR, Freeman MR, Di Vizio D (2015) Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 40:41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balaj L, Lessard R, Dai L, Cho Y-J, Pomeroy SL, Breakefield XO et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 1(2):180

    Article  CAS  Google Scholar 

  84. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. O’Driscoll L (2015) Expanding on exosomes and ectosomes in cancer. N Engl J Med 372(24):2359–2362

    Article  PubMed  CAS  Google Scholar 

  86. Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, de Candia P et al (2016) Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci 17(2):175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Minciacchi VR, Zijlstra A, Rubin MA, Di Vizio D (2017) Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed? Prostate Cancer Prostatic Dis

    Google Scholar 

  88. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913

    Article  PubMed  Google Scholar 

  89. Yang L, Dutta SM, Troyer DA, Lin JB, Lance RA, Nyalwidhe JO et al (2015) Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer. Oncotarget 6(41):43743–43758

    PubMed  PubMed Central  Google Scholar 

  90. Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P et al (2015) Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. Oncotarget 6(25):21740–21754

    Article  PubMed  PubMed Central  Google Scholar 

  91. Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R et al (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67(1):33–41

    Article  CAS  PubMed  Google Scholar 

  92. Del Re M, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C et al (2016) The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol

    Google Scholar 

  93. Dijkstra S, Birker IL, Smit FP, Leyten GHJM, de Reijke TM, van Oort IM et al (2014) Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 191(4):1132–1138

    Article  CAS  PubMed  Google Scholar 

  94. Korzeniewski N, Tosev G, Pahernik S, Hadaschik B, Hohenfellner M, Duensing S (2015) Identification of cell-free microRNAs in the urine of patients with prostate cancer. Urol Oncol 33(1):16.e17–e22

    Article  PubMed  CAS  Google Scholar 

  95. Corcoran C, Rani S, O’Driscoll L (2014) miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 74(13):1320–1334

    Article  CAS  PubMed  Google Scholar 

  96. McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S et al (2016) A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2(7):882–889

    Article  PubMed  Google Scholar 

  97. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M et al (2015) Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 1(5):582–591

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Goldkorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zainfeld, D., Goldkorn, A. (2018). Liquid Biopsy in Prostate Cancer: Circulating Tumor Cells and Beyond. In: Daneshmand, S., Chan, K. (eds) Genitourinary Cancers . Cancer Treatment and Research, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-319-93339-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93339-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93338-2

  • Online ISBN: 978-3-319-93339-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics