Skip to main content

Abstract

It is of importance to better understand the pathophysiological mechanisms leading to left ventricular (LV) maladaptation and the timely identification and management of patients at risk for developing symptomatic heart failure (HF). High blood pressure is the major modifiable risk factor for overt HF. In patients with hypertension, the process of myocardial remodeling/dysfunction starts long before the onset of HF symptoms. The long-term increased afterload (high pressure) and, consequently, the chronically increased cardiac performance lead to LV concentric remodeling, decreased longitudinal systolic deformation (strain), diastolic dysfunction, and increased LV oxygen requirements. All these processes eventually result in symptomatic HF. Recent studies revealed a high prevalence of asymptomatic (subclinical) LV systolic and diastolic dysfunction/remodeling in the community. In this chapter we discussed the different aspects of cardiac maladaptive responses to a chronically increased hemodynamic load. We also illustrated a complex interaction between the different components of blood pressure, arterial properties, and echocardiographic indexes reflecting LV function and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke and efficiency both remain nearly optimal despite altered vascular loading. Am J Phys. 1993;264:H1817–24.

    Google Scholar 

  2. Choi HF, D’hooge J, Rademakers FE, Claus P. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2638–41.

    PubMed  Google Scholar 

  3. Spotnitz HM. Macro design, structure, and mechanics of the left ventricle. J Thorac Cardiovasc Surg. 2000;119:1053–77.

    Article  CAS  Google Scholar 

  4. Gould KL, Kennedy JW, Frimer M, Pollack GH, Dodge HT. Analysis of wall dynamics and directional components of left ventricular contraction in man. Am J Cardiol. 1976;38:322–31.

    Article  CAS  Google Scholar 

  5. Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, Aragam J, Benjamin EJ, Solomon SD, Vasan RS. Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging. 2013;6:692–9.

    Article  Google Scholar 

  6. Sengupta PP. Left ventricular transmural mechanics: tracking opportunities in-depth. J Am Soc Echocardiogr. 2009;22:1022–4.

    Article  Google Scholar 

  7. Lumens J, Prinzen FW, Delhaas T. Longitudinal strain: “think globally, track locally”. JACC Cardiovasc Imaging. 2015;8:1360–3.

    Article  Google Scholar 

  8. Sengupta PP, Narula J. Reclassifying heart failure: predominantly subendocardial, subepicardial, and transmural. Heart Fail Clin. 2008;4:379–82.

    Article  Google Scholar 

  9. Donal E, Bergerot C, Thibault H, Ernande L, Loufoua J, Augeul L, Ovize M, Derumeaux G. Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study. Eur J Echocardiogr. 2009;10:914–21.

    Article  Google Scholar 

  10. Ballo P, Quatrini I, Giacomin E, Motto A, Mondillo S. Circumferential versus longitudinal systolic function in patients with hypertension: a nonlinear relation. J Am Soc Echocardiogr. 2007;20:298–306.

    Article  Google Scholar 

  11. Baltabaeva A, Marciniak M, Bijnens B, Moggridge J, He FJ, Antonios TF, MacGregor GA, Sutherland GR. Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur J Echocardiogr. 2008;9:501–8.

    PubMed  Google Scholar 

  12. Cauwenberghs N, Knez J, Tikhonoff V, D’hooge J, Kloch-Badelek M, Thijs L, Stolarz-Skrzypek K, Haddad F, Wojciechowska W, Swierblewska E, Casiglia E, Kawecka-Jaszcz K, Narkiewicz K, Staessen JA, Kuznetsova T. Doppler indexes of left ventricular systolic and diastolic function in relation to the arterial stiffness in a general population. J Hypertens. 2016;34:762–71.

    Google Scholar 

  13. Kawaguchi M, Hay I, Fetics BJ, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    Article  Google Scholar 

  14. Davies JE, Baksi J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Foale RA, Malik IS, Tyberg JV, Parker KH, Mayet J, Hughes AD. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index. Am J Physiol Heart Circ Physiol. 2010;298:H580–6.

    Article  CAS  Google Scholar 

  15. Schultz MG, Davies JE, Hardikar A, Pitt S, Moraldo M, Dhutia N, Hughes AD, Sharman JE. Aortic reservoir pressure corresponds to cyclic changes in aortic volume: physiological validation in humans. Arterioscler Thromb Vasc Biol. 2014;34:1597–603.

    Article  CAS  Google Scholar 

  16. Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol. 2003;284:H1358–68.

    Article  CAS  Google Scholar 

  17. Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension. 2012;60:778–85.

    Google Scholar 

  18. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  Google Scholar 

  19. Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, Benjamin EJ, Mitchell GF, Vasan RS. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4(11):e002189.

    Article  Google Scholar 

  20. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. A systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  Google Scholar 

  21. Moriarty TF. The law of Laplace. Its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Circ Res. 1980;46:321–31.

    Article  CAS  Google Scholar 

  22. Devereux RB, Roman MJ. Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences. Hypertens Res. 1999;22:1–9.

    Article  CAS  Google Scholar 

  23. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.

    Article  CAS  Google Scholar 

  24. Kuznetsova T, Thijs L, Knez J, Cauwenberghs N, Petit T, Gu YM, Zhang Z, Staessen JA. Longitudinal changes in left ventricular diastolic function in a general population. Circ Cardiovasc Imaging. 2015;8(4):e002882.

    Google Scholar 

  25. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-Catheterization Study. Circulation. 2000;102:1788–94.

    Article  CAS  Google Scholar 

  26. Cauwenberghs N, Knez J, D’hooge J, Thijs L, Yang WY, Wei FF, Zhang ZY, Staessen JA, Kuznetsova T. Longitudinal changes in LV structure and diastolic function in relation to arterial properties in general population. JACC Cardiovasc Imaging. 2017;10:1307–16.

    Google Scholar 

  27. Shim CY, Park S, Choi D, Yang WI, Cho IJ, Choi EY, Chung N, Ha JW. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol. 2011;57:1226–33.

    Article  Google Scholar 

  28. Borlaug BA. Sex, load, and relaxation: are women more susceptible to load-dependent diastolic dysfunction? J Am Coll Cardiol. 2011;57:1234–6.

    Article  Google Scholar 

  29. Hayward CS, Kalnins WV, Kelly RP. Gender-related differences in left ventricular chamber function. Cardiovasc Res. 2001;49:340–50.

    Article  CAS  Google Scholar 

  30. Kuznetsova T, Cauwenberghs N, Knez J, Yang WY, Herbots L, D’hooge J, Haddad F, Thijs L, Voigt JU, Staessen J. Additive prognostic value of left ventricular systolic dysfunction in a population-based cohort. Circ Cardiovasc Imaging. 2016;9(7):e004661.

    Google Scholar 

  31. Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the vascular system in terms of pressure-volumes relationships. In: Ventriculo-vascular coupling: clinical, physiologic, and engineering aspects. New York: Springer Verlag; 1987. p. 210–39.

    Chapter  Google Scholar 

  32. Chantler PD, Melenovsky V, Schulman SP, Gerstenblith G, Becker LC, Ferrucci L, Fleg JL, Lakatta EG, Najjar SS. The sex-specific impact of systolic hypertension and systolic blood pressure on arterial-ventricular coupling at rest and during exercise. Am J Physiol Heart Circ Physiol. 2008;295:H145–53.

    Article  CAS  Google Scholar 

  33. Cohen-Solal A, Caviezel B, Himbert D, Gourgon R. Left ventricular-arterial coupling in systemic hypertension: analysis by means of arterial effective and left ventricular elastances. J Hypertens. 1994;12:591–600.

    Article  CAS  Google Scholar 

  34. Kuznetsova T, D’hooge J, Kloch-Badelek M, Sakiewicz W, Thijs L, Staessen JA. Impact of hypertension on ventricular-arterial coupling and regional myocardial work at rest and during isometric exercise. J Am Soc Echocardiogr. 2012;25:882–90.

    Google Scholar 

  35. Saba PS, Ganau A, Devereux RB, Pini R, Pickering TG, Roman MJ. Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension. J Hypertens. 1999;17:1007–15.

    Article  CAS  Google Scholar 

  36. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23:351–5.

    Article  Google Scholar 

  37. Urheim S, Rabben SI, Skulstad H, Lyseggen E, Ihlen H, Smiseth OA. Regional myocardial work by strain Doppler echocardiography and LV pressure: a new method for quantifying myocardial function. Am J Physiol Heart Circ Physiol. 2005;288:H2375–80.

    Article  CAS  Google Scholar 

  38. Aylward PE, McRitchie RJ, Chalmers JP, West MJ. Baroreflex control of myocardial contractility in conscious normotensive and renal hypertensive rabbits. Hypertension. 1983;5:916–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kuznetsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kuznetsova, T., Cauwenberghs, N. (2019). Hemodynamic Mechanisms. In: Dorobantu, M., Mancia, G., Grassi, G., Voicu, V. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-93320-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93320-7_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93319-1

  • Online ISBN: 978-3-319-93320-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics