Skip to main content

Pathophysiology of Hypertensive Heart Disease

  • Chapter
Hypertension and Heart Failure

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

Abstract

Left ventricular hypertrophy (LVH) is regarded as the key biomarker of hypertensive heart disease and integrated marker of cardiovascular risk reflecting cardiac alterations induced by hemodynamic and non-hemodynamic factors operating in hypertension. The pathogenetic mechanisms responsible of LVH remain incompletely elucidated.

Elevated blood pressure (BP) is the main trigger of events leading to LVH development and diastolic/systolic dysfunction; also, growth factors, cytokines, neurohormones, and ethnic/genetic predisposition play a relevant role in this process. Alterations in LV diastolic and systolic function in hypertensive heart disease are related to development of structural and functional abnormalities involving extracellular matrix, fibrous tissue, vessels, and cardiomyocytes themselves.

In this chapter, pathophysiological mechanisms and clinical correlates of LVH (and its subtypes) and diastolic/systolic dysfunction will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuspidi C, Sala C, Casati A, et al. Clinical and prognostic value of hypertensive cardiac damage in the PAMELA study. Hypertens Res. 2017;40:329–35.

    Article  Google Scholar 

  2. Materson BJ, Garcia-Estrada M, et al. Prehypertension is real and can be associated with target organ damage. J Am Soc Hypertens. 2017;11:704–8.

    Article  Google Scholar 

  3. Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure: contemporary update. JACC Heart Fail. 2017;5:543–51.

    Article  Google Scholar 

  4. Nadruz W, Shah AM, Solomon SD. Diastolic dysfunction and hypertension. Med Clin North Am. 2017;101:7–17.

    Article  Google Scholar 

  5. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  Google Scholar 

  6. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16:1031–41.

    Article  CAS  Google Scholar 

  7. Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with left ventricular hypertrophy in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging. 2015;8:172–80.

    Article  Google Scholar 

  8. Lee DS, Gona P, Vasan RS, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: Insights from the Framingham Heart study of the National Heart, Lung, and Blood institute. Circulation. 2009;119:3070–7.

    Article  Google Scholar 

  9. Muñoz-Durango N, Fuentes CA, Castillo AE, et al. Role of the renin-angiotensin-aldosterone system beyond blood pressure regulation: molecular and cellular mechanisms involved in end-organ damage during arterial hypertension. Int J Mol Sci. 2016;17(7):797.

    Article  Google Scholar 

  10. Rossi GP, Cesari M, Cuspidi C, et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension. 2013;62:62–9.

    Article  CAS  Google Scholar 

  11. Grassi G, Seravalle G, Mancia G. Sympathetic activation in cardiovascular disease: evidence, clinical impact and therapeutic implications. Eur J Clin Investig. 2015;45:1367–75.

    Article  Google Scholar 

  12. Aurigemma GP, de Simone G, Fitzgibbons T. Cardiac remodelling in obesity. Circ Cardiovasc Imaging. 2013;6:142–52.

    Article  Google Scholar 

  13. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62.

    Article  CAS  Google Scholar 

  14. Haring B, Wang W, Lee ET, et al. Effect of dietary sodium and potassium intake on left ventricular diastolic function and mass in adults ≤40 years (from the Strong Heart Study). Am J Cardiol. 2015;115:1244–8.

    Article  CAS  Google Scholar 

  15. Menni C, Boffi L, Cesana F, et al. Variant on chromosome 9p is associated with left ventricular mass: results from two cohorts of essential hypertensive individuals. J Hypertens. 2012;30:2144–50.

    Article  CAS  Google Scholar 

  16. Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19:1550–8.

    Article  CAS  Google Scholar 

  17. Cuspidi C, Mancia G, Ambrosioni E, et al; APROS Investigators. Left ventricular and carotid structure in untreated, uncomplicated essential hypertension: results from the Assessment Prognostic Risk Observational Survey (APROS). J Hum Hypertens. 2004;18:891–6.

    Google Scholar 

  18. Khouri MG, Peshock RM, Ayers CR, et al. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas Heart Study. Circ Cardiovasc Imaging. 2010;3:164–71.

    Article  Google Scholar 

  19. Bang CN, Gerdts E, Aurigemma GP, et al. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients. Circ Cardiovasc Imaging. 2014;7:422–9.

    Article  Google Scholar 

  20. Cuspidi C, Facchetti R, Bombelli M, et al. Risk of mortality in relation to an updated classification of left ventricular geometric abnormalities in a general population: the Pamela study. J Hypertens. 2015;33:2133–40.

    Article  CAS  Google Scholar 

  21. Voorhees AP, Han HC. Biomechanics of cardiac function. Compr Physiol. 2016;5:1623–44.

    Google Scholar 

  22. Chahal NS, Lim TK, Jain P, et al. New insights into the relationship of left ventricular geometry and left ventricular mass with cardiac function: a population study of hypertensive subjects. Eur Heart J. 2010;31:588–94.

    Article  Google Scholar 

  23. Zanchetti A, Cuspidi C, Comarella L, et al. Left ventricular diastolic dysfunction in elderly hypertensives: results of the APROS-diadys study. J Hypertens. 2007;25:2158–67.

    Article  CAS  Google Scholar 

  24. Canepa M, Strait JB, Milaneschi Y, et al. The relationship between visceral adiposity and left ventricular diastolic function: results from the Baltimore Longitudinal Study of Aging. Nutr Met Cardiovasc Dis. 2013;23:1263–70.

    Article  CAS  Google Scholar 

  25. Tadic M, Cuspidi C, Bombelli M, et al. Hypertensive heart disease beyond left ventricular hypertrophy: are we ready for echocardiographic strain evaluation in everyday clinical practice ? J Hypertens Dec. 2018;36(4):744–53.

    Article  CAS  Google Scholar 

  26. Kanar B, Ozben B, Kanar HS, et al. Left atrial volume changes are an early marker of end-organ damage in essential hypertension: a multidisciplinary approach to an old problem. Echocardiography. 2017;34:1895–902.

    Article  Google Scholar 

  27. Rassier DE, Pavlov I. Contractile characteristics of sarcomeres arranged in series or mechanically isolated from myofibrils. Adv Exp Med Biol. 2010;682:123–40.

    Article  Google Scholar 

  28. de Simone G, Devereux RB, Roman MJ, et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol. 1994;23:1444–51.

    Article  Google Scholar 

  29. Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ, et al. Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen City Heart Study. Circ Cardiovasc Imaging. 2017;10:e005521.

    PubMed  PubMed Central  Google Scholar 

  30. Tadic M, Cuspidi C, Majstorovic A, et al. The relationship between left ventricular deformation and different geometric patterns according to the updated classification: findings from the hypertensive population. J Hypertens. 2015;33:1954–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Cuspidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Cuspidi, C., Sala, C., Tadic, M., Grassi, G. (2019). Pathophysiology of Hypertensive Heart Disease. In: Dorobantu, M., Mancia, G., Grassi, G., Voicu, V. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-93320-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93320-7_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93319-1

  • Online ISBN: 978-3-319-93320-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics