Skip to main content

Phytoplankton in Alte Donau: Response to Trophic Change from Hypertrophic to Mesotrophic Over 22 Years

  • Chapter
  • First Online:
The Alte Donau: Successful Restoration and Sustainable Management

Abstract

The long-term phytoplankton study in groundwater-seepage lake Alte Donau, a former side-arm of the Danube River in Vienna, covers four main lake treatment periods (1–4) from 1993 to 2014. During hypertrophic conditions with annual total phosphorus (TP) concentrations of 50–70 μg L−1 and mean summer phytoplankton biovolume of 18–24 mm3 L−1 before restoration (1), the filamentous cyanobacterium Cylindrospermopsis raciborskii was the main taxon in association with Limnothrix redekei. The drastic phosphorus reduction by chemical RIPLOX-precipitation was repeated twice (2a/b, 1995 and 1996) and resulted in a prompt drop of summer phytoplankton to 4.6 mm3 L−1 in 1995 and 1.7 mm3 L−1 in 1996. Non-filamentous cyanobacteria contributed here only moderately while relative high peak contributions of chlorophytes occurred. After years of re-establishment of macrophytes (3), the summer phytoplankton biovolume remained low during the period of sustained ‘stable conditions’ (4) with values between 0.5 and 1.5 mm3 L−1. In the long-term, phytoplankton was responding to low annual total phosphorus (10–11 μg L−1) which finally indicated a mesotrophic state close to oligotrophic conditions according to the lake classification scheme. The long-term median of chlorophyll-a (chl-a) content was 0.50% of wet weight phytoplankton biomass. As the phytoplankton composition shifted from a cyanobacteria dominated assemblage to a phytoplankton assemblage that was composed of taxa of various taxonomic affiliations, the chl-a content varied considerably. Chl-a content reached its lowest median value of 0.19% when cyanobacteria formed blooms contributing 77% to total phytoplankton (period 1) and was highest with 0.83% during the peak development of chlorophytes which contributed 18% to total biovolume (period 2b). The relationship between phytoplankton chl-a and TP is more robust than between phytoplankton biovolume and TP for indicating the lake’s trophic state, although both response curves are statistically significant and provide roughly the same main picture of an ecosystem shift from hypertrophic in 1993 to mesotrophic in 2000 and the persistence of mesotrophic conditions for the 15 recent years. Trophic shifts were also indicated by the phytoplankton assemblage metric when comparing phytoplankton species composition between the lake treatment periods. The main picture of seasonal development of phytoplankton taxa and functional phytoplankton groups indicated that assemblages either prevailed in winter to spring or summer to autumn. Annual phytoplankton development thus seems primarily distinctive between the two half-year-cycles, namely the winter-spring and the summer-autumn period, rather than between the four seasons. While the seasonal development of phytoplankton follows the lake phenology commonly observed in temperate lakes, long-term compositional shifts of phytoplankton especially responded to the sustained reduction of TP forced by lake treatment measures in Alte Donau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abonyi A, Leitão M, Lançon AM, Padisák J (2012) Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698(1):233–249

    Article  Google Scholar 

  • Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41(3):621–634

    Article  Google Scholar 

  • Alster A, Kaplan-Levy RN, Sukenik A, Zohary T (2010) Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia 639(1):115–128

    Article  Google Scholar 

  • Amaral V, Bonilla S, Aubriot L (2014) Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations. Eur J Phycol 49(1):134–141

    Article  CAS  Google Scholar 

  • Anneville O, Gammeter S, Straile D (2005) Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw Biol 50(10):1731–1746

    Article  CAS  Google Scholar 

  • Aubriot L, Bonilla S (2012) Rapid regulation of phosphate uptake in freshwater cyanobacterial blooms. Aquat Microb Ecol 67(3):251–263

    Article  Google Scholar 

  • Bahnwart M, Hübener T, Schubert H (1998) Downstream changes in phytoplankton composition and biomass in a lowland river–lake system (Warnow River, Germany). Hydrobiologia 391(1–3):99–111

    Article  Google Scholar 

  • Barone R, Naselli-Flores L (2003) Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. In: Phytoplankton and equilibrium concept: the ecology of steady-state assemblages. Springer, Dordrecht, pp 325–329

    Chapter  Google Scholar 

  • Bonilla S, Aubriot L, Soares MCS, González-Piana M, Fabre A, Huszar VL, Lürling M, Antoniades D, Padisák J, Kruk C (2012) What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol 79(3):594–607

    Article  CAS  PubMed  Google Scholar 

  • Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfi R (2006) Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat Microb Ecol 45(2):147–161

    Article  Google Scholar 

  • Brett MT, Benjamin MM (2008) A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw Biol 53(1):194–211

    CAS  Google Scholar 

  • Brettum P (1989) Alger som indikator på vannkvalitet i norske innsjøer. Planteplankton. Niva-Rapport 2344:1–111 (in Norwegian) Trondheim, German Translation BG Meier) pp 112

    Google Scholar 

  • Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J Geophys Res Oceans 100(C7):13321–13332

    Article  Google Scholar 

  • Bukowska A, Kaliński T, Koper M, Kostrzewska-Szlakowska I, Kwiatowski J, Mazur-Marzec H, Jasser I (2017) Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Sci Rep 7(1):8342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burford MA, MCNeale KL, MCKenzie-Smith FJ (2006) The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshw Biol 51(11):2143–2153

    Article  CAS  Google Scholar 

  • Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo OE, Neilan BA (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53

    Article  PubMed  Google Scholar 

  • Cao HS, Tao Y, Kong FX, Yang Z (2008) Relationship between temperature and cyanobacterial recruitment from sediments in laboratory and field studies. J Freshw Ecol 23(3):405–412

    Article  CAS  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369

    Article  CAS  Google Scholar 

  • Centis B, Tolotti M, Salmaso N (2010) Structure of the diatom community of the River Adige (North-Eastern Italy) along a hydrological gradient. Hydrobiologia 639(1):37–42

    Article  CAS  Google Scholar 

  • Chen Y, Qin B, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25(4):445–453

    Article  Google Scholar 

  • Costanza R, Mageau M (1999) What is a healthy ecosystem? Aquat Ecol 33(1):105–115

    Article  Google Scholar 

  • Crossetti LO, Bicudo CEdeM (2008) Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610(1):161–173

    Article  CAS  Google Scholar 

  • De Senerpont Domis LN, Elser JJ, Gsell AS, Huszar VLM, Ibelings BW, Jeppesen E, Kosten S, Mooij WM, Roland F, Sommer U, Van Donk E, Winder M, Lürling M (2013) Plankton dynamics under different climatic conditions in space and time. Freshw Biol 58(3):463–482

    Article  Google Scholar 

  • Deng J, Qin B, Sarvala J, Salmaso N, Zhu G, Ventelä AM, Zhang Y, Gao G, Nurminen L, Kirkkala T, Tarvainen M, Vuorio K (2016) Phytoplankton assemblages respond differently to climate warming and eutrophication: a case study from Pyhäjärvi and Taihu. J Great Lakes Res 42(2):386–396

    Article  CAS  Google Scholar 

  • Dokulil MT (2016) Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light. Hydrobiologia 764(1):241–247

    Article  Google Scholar 

  • Dokulil M, Donabaum U (2014) Phytoplankton of the River Danube: August/September 2013 (JDS3). Danube News 30(16):6–8

    Google Scholar 

  • Dokulil MT, Herzig A (2009) An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquat Ecol 43(3):715–725

    Article  CAS  Google Scholar 

  • Dokulil MT, Janauer GA (1990) Nutrient input and trophic status of the “Neue Donau”, a high-water control system along the river Danube in Vienna, Austria. Water Sci Technol 22(5):137–144

    Article  CAS  Google Scholar 

  • Dokulil MT, Mayer J (1996) Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol Stud 83:179–195

    Google Scholar 

  • Dokulil M, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12

    Article  CAS  Google Scholar 

  • Dokulil MT, Teubner K (2003) Eutrophication and restoration of shallow lakes–the concept of stable equilibria revisited. Hydrobiologia 506(1):29–35

    Article  Google Scholar 

  • Dokulil MT, Teubner K (2005) Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data. Freshw Biol 50(10):1594–1604

    Article  CAS  Google Scholar 

  • Dokulil M, Teubner K (2006) Bewertung der Phytoplanktonstruktur stehender Gewässer gemäß der EU-Wasserrahmenrichtlinie: Der modifizierte Brettum Index. In: DGL-Tagungsbericht 2005 (29.9.-2.10.2005) Karlsruhe, pp 356–360

    Google Scholar 

  • Dokulil MT, Teubner K (2010) Eutrophication and climate change: present situation and future scenarios. In: Eutrophication: causes, consequences and control. Springer, Berlin, pp 1–16

    Google Scholar 

  • Dokulil M, Teubner K, Greisberger S (2005) Typenspezifische Referenzbedingungen für die integrierende Bewertung des ökologischen Zustandes stehender Gewässer Österreichs gemäß der EU-Wasserrahmenrichtlinie. Modul 1: Die Bewertung der Phytoplanktonstruktur nach dem Brettum-Index. Report of Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. Wien, Austria, 49 pp

    Google Scholar 

  • Dokulil MT, Donabaum K, Teubner K (2007) Modifications in phytoplankton size structure by environmental constraints induced by regime shifts in an urban lake. Hydrobiologia 578(1):59–63

    Article  CAS  Google Scholar 

  • Donabaum (1988) Phytoplankton. In: Alte Donau. Projektstudie im Auftrag der Wasserstraßendirektion. (ed Löffler H) Eigenverlag, pp 272

    Google Scholar 

  • Donabaum K (1992) Der Chlorophyll-a-Gehalt von Planktonalgen. Diss. Universität Wien, 264 pp

    Google Scholar 

  • Donabaum K, Schagerl M, Dokulil MT (1999) Integrated management to restore macrophyte domination. Hydrobiologia 395/396:87–97

    Article  CAS  Google Scholar 

  • Donabaum K, Pall K, Teubner K, Dokulil M (2004) Alternative stable states, resilience and hysteresis during recovery from eutrophication – a case study. SIL News 43:1–4

    Google Scholar 

  • Dudel G, KOHL J-G (1991) Contribution of dinitrogen fixation and denitrification to the N-budget of shallow lake. Verhandlungen der Internationalen Vereinigung für Limnologie 24:884–888

    CAS  Google Scholar 

  • Dunn OJ, Clark VA (1974) Applied statistics: analysis of variance and regression. Wiley, New York, p 353

    Google Scholar 

  • EU Water Framework Directive, 2000/60/EC (2000). http://ec.europa.eu/environment/water/water-framework/index_en.html (12.4.2007)

  • Falkner R, Falkner G (2003) Distinct adaptivity during phosphate uptake by the cyanobacterium Anabaena variabilis reflects information processing about preceding phosphate supply. J Trace Microprobe Tech 21(2):363–375

    Article  CAS  Google Scholar 

  • Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42(3):313–321

    Article  CAS  PubMed  Google Scholar 

  • Fastner J, Rücker J, Stüken A, Preußel K, Nixdorf B, Chorus I, Köhler A, Wiedner C (2007) Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ Toxicol 22(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Felip M, Catalan J (2000) The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J Plankton Res 22(1):91–106

    Article  Google Scholar 

  • Feuillade M, Davies A (1994) Seasonal variations and long-term trends in phytoplankton pigments. Archiv für Hydrobiologie Beih Ergebn Limnol 41:95–111

    Google Scholar 

  • Figueredo CC, Giani A (2009) Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnol-Ecol Manag Inland Waters 39(4):264–272

    Article  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2009) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32(1):119–137

    Article  CAS  Google Scholar 

  • Forsberg C, Ryding SO (1980) Eutrophication parameters and trophic state indicies in 30 waste receiving Swedish lakes. Arch Hydrobiol 89:189–207

    CAS  Google Scholar 

  • Geider RJ, MacIntyre HL (2002) Physiology and biochemistry of photosynthesis and algal carbon acquisition. In: Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems. Blackwell, Malden, pp 44–77

    Chapter  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Prog Ser 148:187–200

    Article  Google Scholar 

  • Grant CS, Louda JW (2010) Microalgal pigment ratios in relation to light intensity: implications for chemotaxonomy. Aquat Biol 11(2):127–138

    Article  Google Scholar 

  • Greisberger S, Teubner K (2007) Does pigment composition reflect phytoplankton community structure in differing temperature and light conditions in a deep alpine lake? An approach using HPLC and delayed fluorescence techniques. J Phycol 43(6):1108–1119

    Article  CAS  Google Scholar 

  • Hampton SE, Galloway AW, Powers SM, Ozersky T, Woo KH, Batt RD et al (2017) Ecology under lake ice. Ecol Lett 20(1):98–111

    Article  PubMed  Google Scholar 

  • He H, Hu E, Yu J, Luo X, Li K, Jeppesen E, Liu Z (2017) Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study. Environ Sci Pollut Res 24:5012–5018

    Article  CAS  Google Scholar 

  • Henderson PA (2003) Practical methods in ecology. Blackwell Science Ltd, Oxford, p 163

    Google Scholar 

  • Hilt S, Henschke I, Rücker J, Nixdorf B (2010) Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study. J Environ Qual 39(2):725–733

    Article  CAS  PubMed  Google Scholar 

  • Hofmann G (1993) Aufwuchsdiatomeen in Seen und ihre Eignung als Indikatoren der Trophie. PhD thesis, JW Goethe-University Frankfurt a Main, pp 196

    Google Scholar 

  • Huber V, Adrian R, Gerten D (2010) A matter of timing: heat wave impact on crustacean zooplankton. Freshw Biol 55(8):1769–1779

    Google Scholar 

  • Ibelings BW, Portielje R, Lammens EH, Noordhuis R, van den Berg MS, Joosse W, Meijer ML (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10(1):4–16

    Article  CAS  Google Scholar 

  • Isvánovics V, Shafik HM, Présing M, Juhos S (2000) Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw Biol 43(2):257–275

    Article  Google Scholar 

  • Jeppesen E, Peder Jensen J, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45(2):201–218

    Article  CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP (2003) Climatic warming and regime shifts in lake food webs—some comments. Limnol Oceanogr 48(3):1346–1349

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willèn E, Winder M (2005) Lake responses to reduced nutrient loading–an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50(10):1747–1771

    Article  CAS  Google Scholar 

  • Jewson DH (1977) Light penetration in relation to phytoplankton content of the euphotic zone of Lough Neagh, N. Ireland. Oikos 28(1):74–83

    Article  CAS  Google Scholar 

  • Joehnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14(3):495–512

    Article  Google Scholar 

  • Kalchev RK, Beshkova MB, Boumbarova CS, Tsvetkova RL, Sais D (1996) Some allometric and non-allometric relationships between chlorophyll-a and abundance variables of phytoplankton. Hydrobiologia 341(3):235–245

    Article  CAS  Google Scholar 

  • Karr JR (1998) Rivers as sentinels: using the biology of rivers to guide landscape management. In: River ecology and management: lessons from the Pacific coastal ecoregion. Springer, New York, pp 502–528

    Chapter  Google Scholar 

  • Kasprzak P, Padisák J, Koschel R, Krienitz L, Gervais F (2008) Chlorophyll a concentration across a trophic gradient of lakes: an estimator of phytoplankton biomass? Limnologica 38(3):327–338

    Article  Google Scholar 

  • Kaštovský J, Hauer T, Mareš J, Krautová M, Bešta T, Komárek J, Desortová B, Heteša J, Hindáková A, Houk V, Janeček E, Kopp R, Marvan P, Pumann P, Skácelová O, Zapomělová E (2010) A review of the alien and expansive species of freshwater cyanobacteria and algae in the Czech Republic. Biol Invasions 12(10):3599–3625

    Article  Google Scholar 

  • Katsiapi M, Moustaka-Gouni M, Sommer U (2016) Assessing ecological water quality of freshwaters: PhyCoI—a new phytoplankton community index. Ecol Inform 31:22–29

    Article  Google Scholar 

  • Kiss KT (1987) Phytoplankton studies in the Szigetköz Section of the Danube during 1981–1982. Algol Stud/Arch Hydrobiol, Supplement Volumes: 247–273

    Google Scholar 

  • Kling HJ (2009) Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria): a brief historic overview and recent discovery in the Assiniboine River (Canada). Fottea 9(1):45–47

    Article  Google Scholar 

  • Köhler J, Behrendt H, Hoeg S (2000) Long-term response of phytoplankton to reduced nutrient load in the flushed Lake Müggelsee (Spree system, Germany). Arch Hydrobiol 148:209–229

    Article  Google Scholar 

  • Kõiv T, Nõges T, Laas A (2011) Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660(1):105–115

    Article  CAS  Google Scholar 

  • Kokociński M, Gągała I, Jasser I, Karosienė J, Kasperovičienė J, Kobos J, Koreivienė J, Soininen J, Szczurowska A, Woszczyk M, Mankiewicz-Boczek J (2017) Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiol Ecol 93(4). fix035

    Google Scholar 

  • Komárková J, Komárek O, Hejzlar J (2003) Evaluation of the long term monitoring of phytoplankton assemblages in a canyon-shape reservoir using multivariate statistical methods. Hydrobiologia 504(1):143–157

    Article  Google Scholar 

  • Krienitz L, Kasprzak P, Koschel R (1996) Long term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee (Baltic Lake District, Germany). Hydrobiologia 330(2):89–110

    Article  CAS  Google Scholar 

  • Kurmayer R, Christiansen G (2009) The genetic basis of toxin production in cyanobacteria. Fr Rev 2(1):31–50

    Google Scholar 

  • Lepistö L, Kauppila P, Rapala J, Pekkarinen M, Sammalkorpi I, Villa L (2006) Estimation of reference conditions for phytoplankton in a naturally eutrophic shallow lake. Hydrobiologia 568(1):55–66

    Article  Google Scholar 

  • Liu X, Lu X, Chen Y (2011) The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10(3):337–343

    Article  CAS  Google Scholar 

  • Liu X, Teubner K, Chen Y (2016) Water quality characteristics of Poyang Lake, China, in response to changes in the water level. Hydrol Res 47(S1):238–248

    Article  CAS  Google Scholar 

  • Livingstone DM (2003) Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Chang 57(1–2):205–225

    Article  Google Scholar 

  • Lobo EA, Heinrich CG, Schuch M, Wetzel CE, Ector L (2016) Diatoms as bioindicators in rivers. In: River Algae. Springer International Publishing, Cham, pp 245–271

    Chapter  Google Scholar 

  • Löffler H (ed) (1988) Alte Donau. Projektstudie im Auftrag der Wasserstraßendirektion. Eigenverlag, pp 272

    Google Scholar 

  • Mantzouki E, Visser PM, Bormans M, Ibelings BW (2016) Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat Ecol 50(3):333–350

    Article  CAS  Google Scholar 

  • Marchetto A, Padedda BM, Mariani MA, Luglie A, Sechi N (2009) A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs. J Limnol 68(1):106–121

    Article  Google Scholar 

  • Mayer J, Dokulil MT, Salbrechter M, Berger M, Posch T, Pfister G, Kirschner AKT, Velimirov B, Steitz A, Ulbricht T (1997) Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliates and bacteria in a hypertrophic shallow lake in Vienna, Austria, In Shallow Lakes’ 95 (Hydrobiologia 342/343:pp 165–174)

    Google Scholar 

  • McCauley E, Downing JA, Watson S (1989) Sigmoid relationships between nutrients and chlorophyll among lakes. Can J Fish Aquat Sci 46(7):1171–1175

    Article  CAS  Google Scholar 

  • McKew BA, Davey P, Finch SJ, Hopkins J, Lefebvre SC, Metodiev MV, Oxborough K, Raines CA, Lawson T, Geider RJ (2013) The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). New Phytol 200(1):74–85

    Article  CAS  PubMed  Google Scholar 

  • Mihaljević M, Špoljarić D, Stević F, Cvijanović V, Kutuzović BH (2010) The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: shift to a clear state. Limnologica 40(3):260–268

    Article  Google Scholar 

  • Mischke U (2003) Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecol 24:S11–S23

    Article  Google Scholar 

  • Moog O (ed) (2002) Fauna Aquatica Austriaca. A comprehensive species Inventory of Austrian Aquatic Organisms with ecological notes. Edition 2002–Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna

    Google Scholar 

  • Moog O, Chovanec A (2000) Assessing the ecological integrity of rivers: walking the line among ecological, political and administrative interests. Hydrobiologia 422:99–109

    Article  Google Scholar 

  • Morabito G, Ruggiu D, Panzani P (2002) Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. J Limnol 61(1):129–145

    Article  Google Scholar 

  • Morabito G, Oggioni A, Caravati E, Panzani P (2007) Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy). Hydrobiologia 578(1):47–57

    Article  Google Scholar 

  • Moustaka-Gouni M, Vardaka E, Michaloudi E, Kormas KA, Tryfon E, Mihalatou H, Kormas KA, Tryfon E, Mihilatou H, Gkelis S, Lanaras T (2006) Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms. Limnol Oceanogr 51(1part2):715–727

    Article  Google Scholar 

  • Müller-Navarra D, Güss S, von Storch H (1997) Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Glob Chang Biol 3(5):429–438

    Article  Google Scholar 

  • Mur LR, Schreurs H, Visser P (1993) How to control undesirable cyanobacterial dominance. In: Giussani G, Callieri C (eds) Strategies for lake ecosystems beyond 2000, Proceedings of 5th International Conference on Conservation and management of Lakes, Stresa 1993, pp 565–569

    Google Scholar 

  • Napiórkowska-Krzebietke A, Pasztaleniec A, Hutorowicz A (2012) Phytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakes. J Elem 17(2):289–303

    Google Scholar 

  • Naselli-Flores L, Barone R (2003) Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. In: Phytoplankton and equilibrium concept: the ecology of steady-state assemblages. Springer, Dordrecht, pp 133–143

    Chapter  Google Scholar 

  • Naselli-Flores L, Barone R (2011) Invited review-fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogam Algol 32(2):157–204

    Article  Google Scholar 

  • Nicklisch A (1998) Growth and light absorption of some planktonic cyanobacteria, diatoms and Chlorophyceae under simulated natural light fluctuations. J Plankton Res 20(1):105–119

    Article  Google Scholar 

  • Nicklisch A, Fietz S (2001) The influence of light fluctuations on growth and photosynthesis of Stephanodiscus neoastraea (diatom) and Planktothrix agardhii (cyanobacterium). Arch Hydrobiol 151(1):141–156

    Article  Google Scholar 

  • Nicklisch A, Shatwell T, Köhler J (2007) Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom. J Plankton Res 30(1):75–91

    Article  Google Scholar 

  • Nixdorf B, Deneke R (1997) Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343:269–284

    Article  CAS  Google Scholar 

  • Nixdorf B, Mischke U, Rücker J (2003) Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111–121

    Article  Google Scholar 

  • Nõges P, Van De Bund W, Cardoso AC, Solimini AG, Heiskanen AS (2009) Assessment of the ecological status of European surface waters: a work in progress. Hydrobiologia 633(1):197–211

    Article  CAS  Google Scholar 

  • Nõges P, Mischke U, Laugaste R, Solimini AG (2010) Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646(1):33–48

    Article  CAS  Google Scholar 

  • OECD, Organization for Economic Cooperation and Development (1982) Eutrophication of waters monitoring, assessment, and control. OECD, Paris

    Google Scholar 

  • ÖNORM M6231 (2001) Richtlinie für die ökologische Untersuchung und Bewertung von stehenden Gewässern. Österreichisches Normungsinstitut. Wien, 58 pp

    Google Scholar 

  • Ozimek T, Gulati RD, van Donk E (1990) Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200(1):399–407

    Article  Google Scholar 

  • Padisák J (1993) The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249(1–3):135–156

    Article  Google Scholar 

  • Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch Hydrobiol Suppl 107(4):563–593

    Google Scholar 

  • Padisák J, Borics G, Grigorszky I, Soróczki-Pintér É (2006) Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553(1):1–14

    Article  Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1):1–19

    Article  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65(4):995–1010

    Article  CAS  PubMed  Google Scholar 

  • Pasztaleniec A (2016) Phytoplankton in the ecological status assessment of European lakes–advantages and constraints. Ochrona Srodowiska i Zasobów Naturalnych 27(1):26–36

    Article  Google Scholar 

  • Phillips G, Willby N, Moss B (2016) Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquat Bot 135:37–45

    Article  Google Scholar 

  • Poikane S, Van den Berg M, Hellsten S, de Hoyos C, Ortiz-Casas J, Pall K, Portielje R, Phillips G, Solheim AL, Tierney D, Wolfram G, van de Bund W (2011) Lake ecological assessment systems and intercalibration for the European water framework directive: aims, achievements and further challenges. Procedia Environ Sci 9:153–168

    Article  CAS  Google Scholar 

  • Qin BQ, Gao G, Zhu GW, Zhang YL, Song YZ, Tang XM, Xu H, Deng JM (2013) Lake eutrophication and its ecosystem response. Chin Sci Bull 58(9):961–970

    Article  CAS  Google Scholar 

  • Qiu D, Wu Z, Liu B, Deng J, Fu G, He F (2001) The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol Eng 18(2):147–156

    Article  Google Scholar 

  • Reynolds CS (1992) Eutrophication and the management of planktonic algae: what Vollenweider couldn’t tell us. In: Sutcliffe DW, Jones JG (eds) Eutrophication-research and application to water supply, pp 4–29

    Google Scholar 

  • Reynolds C, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional group classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  • Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93(2):157–191

    Article  Google Scholar 

  • Rimet F, Druart JC, Anneville O (2009) Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974–2007). Eco Inform 4(2):99–110

    Article  Google Scholar 

  • Ripl W (1976) Biochemical oxidation of polluted lake sediments with nitrate. A new restoration method. Ambio 5(3):112–135

    Google Scholar 

  • Rodhe W (1955) Can plankton production proceed during winter darkness in subarctic lakes? Verhandlungen der Internationalen Vereinigung für Limnologie 12:117–122

    Google Scholar 

  • Rojo C, Alvarez-Cobelas M (1994) Population dynamics of Limnothrix redekei, Oscillatoria lanceaformis, Planktothrix agardhii and Pseudanabeana limnetica (cyanobacteria) in a shallow hypertrophic lake (Spain). Hydrobiologia 275/276:165–171

    Article  Google Scholar 

  • Rott E (1981) Some results from phytoplankton counting intercalibrations. Schweiz Z Hydrol 43:34–62

    Google Scholar 

  • Sapna S, Gray DK, Read JS, O’Reilly CM, Schneider P, Qudrat A, Gries C, Stefanoff S, Hampton SE, Hook S, Lenters JD, Livingstone DM, McIntyre PB, Adrian R, Allan MG, Anneville O, Arvola L, Austin J, Bailey J, Baron JS, Brookes J, Chen Y, Daly R, Dokulil M, Dong B, Ewing K, de Eyto E, Hamilton D, Havens K, Haydon S, Hetzenauer H, Heneberry J, Hetherington AL, Higgins SN, Hixson E, Izmest’eva LR, Jones BM, Kangur K, Kasprzak P, Köster O, Kraemer BM, Kumagai M, Kuusisto E, Leshkevich G, May L, MacIntyre S, Müller-Navarra D, Naumenko M, Nõges P, Nõges T, Niederhauser P, North RP, Paterson A, Plisnier P-D, Rigosi A, Rimmer A, Rogora M, Rudstam L, Rusak JA, Salmaso N, Samal NR, Schindler DE, Schladow G, Schmidt SR, Schultz T, Silow EA, Straile D, Teubner K, Verburg P, Voutilainen A, Watkinson A, Weyhenmeyer GA, Williamson CE, Woo KH (2015) A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data 2:150008

    Article  Google Scholar 

  • Schagerl M, Donabaum K (2003) Patterns of major photosynthetic pigments in freshwater algae. 1. Cyanoprokaryota, Rhodophyta and Cryptophyta. Ann Limnol-Int J Limnol 39(1):35–47

    Article  Google Scholar 

  • Schagerl M, Müller B (2006) Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Physiol 163(7):709–716

    Article  CAS  PubMed  Google Scholar 

  • Schagerl M, Riedler P (2000) Phytoplankton composition in the River Danube floodplain system Regelsbrunner Au. Abhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich 31:43–62

    Google Scholar 

  • Scheffer M, Straile D, Van Nes EH, Hosper H (2001) Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783

    Article  Google Scholar 

  • Schmidt A (1994) Main characteristics of the phytoplankton of the Southern Hungarian section of the River Danube. In: Phytoplankton in turbid environments: rivers and shallow lakes. Springer, Dordrecht, pp 97–108

    Chapter  Google Scholar 

  • Schreurs H (1992) Cyanobacterial dominance – relations to eutrophication and lake morphology, Academisch Proefschrift, Universiteit van Amsterdam

    Google Scholar 

  • Shatwell T, Koehler J, Nicklisch A (2008) Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Glob Chang Biol 14(9):2194–2200

    Article  Google Scholar 

  • Shatwell T, Nicklisch A, Köhler J (2012) Temperature and photoperiod effects on phytoplankton growing under simulated mixed layer light fluctuations. Limnol Oceanogr 57(2):541–553

    Article  Google Scholar 

  • Solimini AG, Cardoso AC, Carstensen J, Free G, Heiskanen AS, Jepsen N, Nõges P, Poikane S, Van De Bund W (2008) The monitoring of ecological status of European freshwaters. In: The water framework directive: ecological and chemical status monitoring. Wiley, Chichester, pp 29–60

    Chapter  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106(4):433–471

    Google Scholar 

  • Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeooesen E, Lürling M, Molinero JC, Mooij WM, Van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2005) Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshw Biol 50:1605–1615

    Article  CAS  Google Scholar 

  • Søndergaard M, Larsen SE, Jørgensen TB, Jeppesen E (2011) Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecol Indic 11(5):1403–1412

    Article  CAS  Google Scholar 

  • Sonntag B, Posch T, Klammer S, Teubner K, Psenner R (2006) Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat Microb Ecol 43(2):193–207

    Article  Google Scholar 

  • Stefaniak K, Kokocinski M, Messyasz B (2005) Dynamics of Planktothrix agardhii (GOM.) ANAGN. ET blooms in polymictic lake Laskownickie and Grylewskie (Wielkopolska region) Poland. Oceanol Hydrobiol Stud 34(3):125–136

    Google Scholar 

  • Straile D (2002) North Atlantic oscillation synchronizes food-web interactions in central European lakes. Proc R Soc Lond B Biol Sci 269(1489):391–395

    Article  Google Scholar 

  • Straile D, Adrian R (2000) The North Atlantic oscillation and plankton dynamics in two European lakes – two variations on a general theme. Glob Chang Biol 6(6):663–670

    Article  Google Scholar 

  • Stüken A, Rücker J, Edrulata T, Preussel K, Hemm M, Nixdorf B, Karsten U, Wiedner C (2006) Distribution of three alien cyanobacterial species (Nostocales) in Northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45(6):696–703

    Article  Google Scholar 

  • Täuscher L (2014) Checkliste der Algen (Cyanobacteria et Phycophyta). Pflanzen und Tiere Sachsen-Anhalts, 66 pp

    Google Scholar 

  • Teubner K (1996) Struktur und Dynamik des Phytoplanktons in Beziehung zur Hydrochemie und Hydrophysik der Gewässer: Eine multivariate statistische Analyse an ausgewählten Gewässern der Region Berlin-Brandenburg. Ph.D thesis, Department of Ecophysiology, Humboldt University Berlin, 232 pp

    Google Scholar 

  • Teubner K (2000) Synchronised changes of planktonic cyanobacterial and diatom assemblages in North German waters reduce seasonality to two principal periods. Arch Hydrobiol Spec Issue Adv Limnol 55:564–580

    Google Scholar 

  • Teubner K (2006) Ergebnisse des Forschungsvorhabens „Bedingungen für das Auftreten toxinbildender Cyanobakterien (Blaualgen) in bayerischen Seen und anderen stehenden Gewässern. In: Toxinbildende Cyanobakterien (Blaualgen) in bayerischen Gewässern: Massenentwicklungen, Gefährdungspotential, wasserwirtschaftlicher Bezug. ed Ha Morscheid. Bayerisches Landesamt für Wasserwirtschaft Materialienband 125

    Google Scholar 

  • Teubner K, Dokulil MT (2002) Ecological stoichiometry of TN: TP: SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages. Arch Hydrobiol 154(4):625–646

    Article  Google Scholar 

  • Teubner K, Feyerabend R, Henning M, Nicklisch A, Woitke P, Kohl J-G (1999) Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen-phosphorus-ratio in hypertrophic riverine lakes. Arch Hydrobiol Spec Issue Adv Limnol 54:325–344

    CAS  Google Scholar 

  • Teubner K, Sarobe A, Vadrucci MR, Dokulil MT (2001) 14C photosynthesis and pigment pattern of phytoplankton as size related adaptation strategies in alpine lakes. Aquat Sci-Res Across Bound 63(3):310–325

    Article  Google Scholar 

  • Teubner K, Tolotti M, Greisberger S, Morscheid H, Dokulil MT, Morscheid H (2003a) Steady state phytoplankton in a deep pre-alpine lake: species and pigments of epilimnetic versus metalimetic assemblages. Hydrobiologia 502:49–64

    Article  Google Scholar 

  • Teubner K, Crosbie N, Donabaum K, Kabas W, Kirschner A, Pfister G, Salbrechter M, Dokulil MT (2003b) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48(3):1141–1149

    Article  CAS  Google Scholar 

  • Teubner K, Morscheid H, Tolotti M, Greisberger S, Morscheid H, Kucklentz V (2004) Bedingungen für das Auftreten toxinbildender Blaualgen in bayerischen Seen und anderen stehenden Gewässern. Bayerisches Landesamt für Wasserwirtschaft Materialien 113

    Google Scholar 

  • Teubner K, Pall K, Donabaum K (2015) Restoration of the urban oxbow lake Alte Donau – a case study. Danube News 32:12–14

    Google Scholar 

  • Tolstoy A (1979) Chlorophyll a in relation to phytoplankton volume in some Swedish lakes. Arch Hydrobiol 85(2):133–151

    CAS  Google Scholar 

  • Vadrucci MR, Barbone E, Ungaro N, Romano A, Bucci R (2017) Application of taxonomic and morpho-functional properties of phytoplankton communities to water quality assessment for artificial lakes in the Mediterranean ecoregion. J Plankton Res 39(3):550–563

    Article  Google Scholar 

  • Vollenweider RA (1968) The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Organisation for Economic Cooperation and Development, Paris, p 159

    Google Scholar 

  • Vörös L, Padisák J (1991) Phytoplankton biomass and chlorophyll-a in some shallow lakes in Central Europe. Hydrobiologia 215(2):111–119

    Article  Google Scholar 

  • Watson S, McCauley E, Downing JA (1992) Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can J Fish Aquat Sci 49(12):2605–2610

    Article  CAS  Google Scholar 

  • Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44(7):1788–1792

    Article  Google Scholar 

  • Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Chang Biol 10(11):1844–1856

    Article  Google Scholar 

  • Woitke P, Schiwietz T, Teubner K, Kohl JG (1996) Annual profiles of photosynthetic lipophilic pigments in four freshwater lakes in relation to phytoplankton counts as well as to nutrient data. Arch Hydrobiol 137(3):363–384

    CAS  Google Scholar 

  • Wu QL, Chen Y, Xu K, Liu Z, Hahn MW (2007) Intra-habitat heterogeneity of microbial food web structure under the regime of eutrophication and sediment resuspension in the large subtropical shallow Lake Taihu, China. Hydrobiologia 581(1):241–254

    Article  CAS  Google Scholar 

  • Wu N, Schmalz B, Fohrer N (2010) Distribution of phytoplankton in a German lowland river in relation to environmental factors. J Plankton Res 33(5):807–820

    Article  CAS  Google Scholar 

  • Wu Z, He H, Cai Y, Zhang L, Chen Y (2014) Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected lake. Hydrobiologia 732(1):61–70

    Article  Google Scholar 

  • Zohary T, Padisák J, Naselli-Flores L (2010) Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639(1):261–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank David Livingstone and Susanne Wilhelm for valuable comments on methods for data interpolation and analyzing time series records during European Union projects REFLECT (http://www.ife.ac.uk/reflect/) and CLIME (http://clime.tkk.fi/) that were useful for data treatment in Alte Donau. We thank all of the numerous collaborators and the Municipal Department for permission of publication. We further want to thank the ‘Wiener Fischereiausschuss’ (Austrian Fishery Association) for providing long-term fish catch records, Franz Wagner and Adrian Boland-Thoms for helpful comments. The long-term lake measurements were financially supported by Municipal Department – 45 (Water Management - Vienna). ‘Österreichisches Komitee Donauforschung, Internationale Arbeitsgemeinschaft Donauforschung’ partly funded data assessment (K.T.). Further data evaluation (I.T.) was partly funded by the TU Wien Science award 2015 received by Wouter Dorigo (EOWAVE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Teubner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teubner, K., Kabas, W., Teubner, I.E. (2018). Phytoplankton in Alte Donau: Response to Trophic Change from Hypertrophic to Mesotrophic Over 22 Years. In: Dokulil, M., Donabaum, K., Teubner, K. (eds) The Alte Donau: Successful Restoration and Sustainable Management. Aquatic Ecology Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-93270-5_9

Download citation

Publish with us

Policies and ethics