Skip to main content

Thermoluminescence: A Tool to Study Ecophysiology of Green Plants

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques
  • 1852 Accesses

Abstract

Thermally induced light emission in physical chemical or biological systems is known as thermoluminescence or TL. This phenomena is the characteristic of a solid state or semi-conductor, in which thermally activated recombination of electrons with positive holes is generated by particle or electromagnetic radiation at room or low temperature prior to their heating in dark Luminescence occurs in materials absorbing light. Light energy absorbed by a system induces photochemical reactions and transduces light/photon energy to kinetic and/or chemical energy. Excess light energy that is not utilized by photochemical processes are emitted back or dissipated in various forms of luminescence viz. fluorescence, phosphorescence, delayed luminescence, chemiluminescence and thermoluminescence. The biophysical analysis of the charge recombination shows that the phenomenon in darkness is the reversal of the primary photochemical processes in PS II. In the present chapter, the practical use of TL for the study of the assessment of environmental impact on the changes in the primary photochemical processes of PSII is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold WA, Azzi JR (1968) Chlorophyll energy levels and electron flow in photosynthesis. Proc Natl Acad Sci U S A 61:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernat G, Steinbach G, Kaňa R, Govindjee, Misra AN, PraÅ¡il O (2018) On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth Res (in press) https://doi.org/10.1007/s11120-017-0458-8

  • Bertsch WF, Azzi JR (1965) A relative maximum in the decay of long-term delayed light emission from the photosynthetic apparatus. Biochim Biophys Acta 94:1526

    Google Scholar 

  • Bhagwat AS, Bhattacharjee SK (2005) Thermoluminescence as a tool in the study of photosynthesis. Taylor and Francis Group, LLC, Boca Raton

    Book  Google Scholar 

  • Bhatnagar R, Saxena P, Vora HS, Dubey VK, Sarangpani KK, Shirke ND, Bhattacharjee SK (2002) Design and performance of a versatile, computer controlled instrument for studying low temperature thermoluminescence from biological samples. Meas Sci Technol 13:2017–2026

    Article  CAS  Google Scholar 

  • Biswal AK, Dilnawaz F, David KAV, Ramaswamy NK, Misra AN (2001) Increase in the intensity of thermoluminescence Q-band during leaf ageing is due to a block in the electron transfer from QA to QB. Luminescence 16:309–313

    Article  CAS  PubMed  Google Scholar 

  • Bjorn LO (1971) Far-red induced, long-live after glow from photosynthetic cells. Size of after glow unit and path of energy accumulation and dissipation. Photochem Photobiol 13:5–20

    Article  CAS  Google Scholar 

  • Demeter S, Govindjee (1989) Thermoluminescence in plants. Physiol Plantarum 75:121–130

    Article  CAS  Google Scholar 

  • Demeter S, Sallai A (1986) Effect of pH on the thermoluminescence of spinach chloroplasts in the presence and absence of photosystem II inhibitors. Biochim Biophys 851:267–275

    Article  CAS  Google Scholar 

  • Demeter S, Rosza Z, Vass I, Hideg E (1985) Thermoluminescence study of charge recombination in photosystem II at low temperature II: oscillatory properties of the Z and a thermoluminescence bands in chloroplasts dark adapted for various time periods. Biochim Biophys Acta 809:379–387

    Article  CAS  Google Scholar 

  • Dilnawaz F, Vass I, Misra AN (2000) Thermoluminescence glow peaks of chloroplasts along the axis of wheat leaf lamina. Photosynthesis: PS2001. CSIRO Publishing. Melbourne, Australia S2-001

    Google Scholar 

  • Ducruet JM (2003) Chlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. J Exp Bot 54:2419–2430

    Article  CAS  PubMed  Google Scholar 

  • Ducruet JM, Miranda T (1992) Graphical and numerical analysis of thermoluminescence and fluorescence F0 emission in photosynthetic material. Photosynth Res 33:15–27

    Article  CAS  PubMed  Google Scholar 

  • Ducruet JM, Vass I (2009) Thermoluminescence: experimental. Photosynth Res 101:195–204

    Article  CAS  PubMed  Google Scholar 

  • Ducruet JM, Vavilin D (1999) Chlorophyll high-temperature thermoluminescence emission as an indicator of oxidative stress. Perturbating effects of oxygen and leaf water content. Free Rad Res 31S:187–192

    Article  Google Scholar 

  • Farineau J (1993) Compared thermoluminescence characteristics of pea thylakoids studied in vitro and in situ (leaves). The effect of photoinhibitory treatments. Photosynth Res 36:25–34

    Article  CAS  PubMed  Google Scholar 

  • Gilbert M, Skotnica J, Weingart I, Wilhelm C (2004a) Effects of UV irradiation on barley and tomato leaves: thermoluminescence as a method to screen the impact of UV radiation on crop plants. Funct Plant Biol 31:825–845

    Article  CAS  Google Scholar 

  • Gilbert M, Wagner H, Weingart I, Skotnica J, Nieber K, Tauer G, Bergmann F, Fischer H, Wilhelm C (2004b) A new type of thermoluminometer: a highly sensitive tool in applied photosynthesis research and plant stress physiology. J Plant Physiol 161:641–651

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A 96:8762–8767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hideg E, Vass I (1993) The 75°C thermoluminescence band of green tissues: chemiluminescence from membrane-chlorophyll interaction. Photochem Photobiol 58:280–283

    Article  CAS  Google Scholar 

  • Hideg E, Kobayashi M, Inaba H (1991) The far-red induced slow component of delayed light from chloroplasts is emitted from photosystem II. Evidence from emission spectroscopy. Photosynth Res 29:107–112

    Article  CAS  PubMed  Google Scholar 

  • Homann PH (1999) Reliability of photosystem II thermoluminescence measurements after sample freezing: few artifacts with photosystem II membranes but gross distortions with certain leaves. Photosynth Res 62:219–229

    Article  CAS  Google Scholar 

  • Inoue Y (1976) Manganese catalyst as a possible cation carrier in thermoluminescence. FEBS Lett 72:279–282

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y (1996) Photosynthetic thermoluminescence as a simple probe of photosystem II electron transport. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, Advances in photosynthesis, vol 3. Kluwer Academic Publishers, Dordrecht, pp 93–107

    Google Scholar 

  • Inoue Y, Yamasita T, Kobayashi Y, Shibata K (1977) Thermoluminescence changes during inactivation and reactivation of the oxygen-evolving system of isolated chloroplasts. FEBS Lett 82:303–306

    Article  CAS  PubMed  Google Scholar 

  • Janda T, Szalai G, Giauffret C, Paldi E, Ducruet JM (1999) The thermoluminescence ‘After glow’ band as a sensitive indicator of abiotic stresses in plants. Z Naturforsch 54c:629–633

    Article  Google Scholar 

  • Johnson GN, Boussac A, Rutherford AW (1994) The origin of 40–50°C thermoluminescence bands in photosystem II. Biochim Biophys Acta 1184:85–92

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (1980) Dependence of delayed luminescence upon adenosine triphosphatase activity in Chlorella. Plant Physiol 65:691–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi P, Misra AN, Nayak L, Biswal B (2013) Chapter 28: Response of mature, developing and senescing chloroplast to environmental stress. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid development in leaves during growth and senescence, Advances in photosynthesis and respiration, vol 36. Springer, Dordrecht, pp 641–668

    Chapter  Google Scholar 

  • Marder JB, Droppa M, Caspi V, Raskin VI, Horvath G (1998) Light-independent thermoluminescence from greening barley leaves: evidence for involvement of oxygen radicals and free chlorophylls. Physiol Plantarum 104:713–719

    Article  CAS  Google Scholar 

  • Maslenkova L (2010) Thermoluminescence from photosynthesizing systems as a method for detection of early plant stress symptoms. Effect of desiccation on thermoluminescence emission parameters in mesophytic and poikilohydric plants. Gener Appl Plant Physiol 36:87–99

    Google Scholar 

  • Merzlyak MN, Pavlov VK, Zhigalova TV (1992) Effect of desiccation on chlorophyll high temperature chemiluminescence in Acer platanoides L. and Aesculushippo castanum L. leaves. J Plant Physiol 139:629–631

    Article  CAS  Google Scholar 

  • Miranda T, Ducruet JM (1995a) Characterization of the chlorophyll thermoluminescence after glow in dark-adapted or far-red-illuminated plant leaves. Plant Physiol Biochem 33:689–699

    CAS  Google Scholar 

  • Miranda T, Ducruet JM (1995b) Effects of dark- and light induced proton gradients in thylakoids on the Q and B thermoluminescence bands. Photosynth Res 43:251–262

    Article  CAS  PubMed  Google Scholar 

  • Misra AN (2013) Thermoluminescence in plants: concept and application. Int J LifeSci Biotechnol Pharm Res 2:10–17

    Google Scholar 

  • Misra AN, Ramaswamy NK (2001) Thermoluminescence of green plants (review, new trends in photosciences). Indian Photobiol Soc News Lett 40:45–50

    Google Scholar 

  • Misra AN, Ramaswamy NK, Desai TS (1997) Thermoluminescence studies on photoinhibition of pothos leaf discs at chilling, room and high temperature. J Photochem Photobiol 38:164–168

    Article  CAS  Google Scholar 

  • Misra AN, Ramaswamy NK, Desai TS (1998a) Thermoluminescence properties and changes in D1 polypeptide of spinach chloroplasts during photoinhibition of spinach leaf discs at chilling, room and high temperatures. In: Garab G (ed) Photosynthesis: mechanism and effects, vol III. Kluwer Academic Publisher, Dordrecht, pp 2213–2216

    Chapter  Google Scholar 

  • Misra AN, Sahu SM, Dilnawaz F, Mahapatra P, Misra M, Ramaswamy NK, Desai TS (1998b) Photosynthetic pigment-protein content, electron transport activity and thermoluminescence properties of chloroplasts along the developmental gradient in greening wheat (Triticum aestivum L.) leaves. In: Garab G (ed) Photosynthesis: mechanism and effects, vol IV. Kluwer Academic Publisher, Dordrecht, pp 3179–3182

    Chapter  Google Scholar 

  • Misra AN, Sahu SM, Misra M, Ramaswamy NK, Desai TS (1998c) Sodium chloride salt stress induced changes in thylakoid pigment-protein complexes, PS II activity and TL glow peaks of chloroplasts from mungbean (Vigna radiata L.) and Indian mustard (Brassica juncea Coss.) seedlings. Z Naturforsch C 54:640–644

    Article  Google Scholar 

  • Misra AN, Dilnawaz F, Misra M, Biswal AK (2001a) Thermoluminescence in chloroplasts as an indicator of alterations in photosystem II reaction center by biotic and abiotic stress. Photosynthetica 39:1–9

    Article  CAS  Google Scholar 

  • Misra AN, Dilnawaz F, Misra M, Biswal AK (2001b) Thermoluminescence in chloroplasts. In: Padha Saradhi B (ed) Biophysical processes in living systems. Oxford/IBH, Science Publisher, New Delhi/Enfield/Plymouth, pp 303–311

    Google Scholar 

  • Misra AN, Biswal AK, Misra M (2002) Physiological, biochemical and molecular aspects of water stress responses in plants, and the biotechnological applications. Proc Natl Acad Sci (India) 72B(II):115–134

    Google Scholar 

  • Misra AN, Misra M, Singh R (2012) Thermoluminescence in chloroplast thylakoid. In: Misra AN (ed) Biophysics. Intech Open, London, pp 155–170

    Chapter  Google Scholar 

  • Mohanty N, Vass I, Demeter S (1989) Copper toxicity affects photosystem II electron transport at the secondary quinone acceptor, QB. Plant Physiol 90:175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamoto I, Sundblad LG, Garderstro ÈP, Sundbom E (1988) Far-red stimulated long-lived luminescence from barley protoplasts. Plant Sci 55:1–7

    Article  CAS  Google Scholar 

  • Rahoutei J, Baron M, Garcia-Luque I, Droppa M, Nemenyi A, Horvath G (1999) Effect of Tobamo virus infection on thermoluminescence characteristics of chloroplasts from infected plants. Z Naturforsch 54c:634–639

    Article  Google Scholar 

  • Randall JT, Wilkins MHF (1945) Phosphorescence and electron traps. Proc R Soc (London) Ser A 184:366–408

    Google Scholar 

  • Rosza Z, Demeter S (1982) Effect of inactivation of the oxygen evolving system on the thermoluminescence of isolated chloroplasts. Photochem Photobiol 36:705–708

    Google Scholar 

  • Rutherford AW, Crofts AR, Inoue Y (1982) Thermoluminescence as a probe of photosystem II photochemistry. The origin of the flash-induced glow peaks. Biochim Biophys Acta 682:457–465

    Article  CAS  Google Scholar 

  • Rutherford AW, Govindjee, Inoue Y (1984a) Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. Proc Natl Acad Sci U S A 81:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford AW, Renger G, Koike H, Inoue Y (1984b) Thermoluminescence as a probe of photosystem II. The redox and protonation states of the secondary acceptor quinone and O2-evolving enzyme. Biochim Biophys Acta 767:548–556

    Article  CAS  Google Scholar 

  • Sahu SM, Misra AN, Misra M, Ramaswamy NK, Desai TS (1998) Sodium chloride salt stress induced changes in thylakoid pigment-protein complexes, PS II activity of mungbean (Vigna radiata L.) seedlings. In: Garab G (ed) Photosynthesis: mechanism and effects, vol IV. Kluwer Academic Publisher, Dordrecht, pp 2625–2628

    Chapter  Google Scholar 

  • Sahu SM, Dilnawaz F, Meera I, Misra M, Ramaswamy NK, Desai TS, Misra AN (1999) Photosynthetic efficiency of mung bean (Vigna radiata L. Wilczek) and Indian mustard (Brassica juncea Coss.) during seedling establishment under NaCl salinity. In: Srivastava GC, Singh K, Pal M (eds) Plant physiology for sustainable agriculture. Pointer Publisher, Jaipur, pp 388–391

    Google Scholar 

  • Sane PV (2004) Thermoluminescence. A technique for probing photosystem II. In: Carpentier R (ed) Photosynthesis research protocols, Methods in molecular biology. Humana Press Inc, Totowa, pp 229–248

    Chapter  Google Scholar 

  • Sane P, Rutherford AW (1986) Thermoluminescence from photosynthetic membranes. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic, Orlando, pp 291–329

    Google Scholar 

  • Sane PV, Desai TS, Tatake VG, Govindjee (1977) On the origin of glow peaks in Euglena cells, spinach chloroplasts and subchloroplast fragments enriched in system I or II. Photochem Photobiol 26:33–39

    Article  CAS  Google Scholar 

  • Sane PV, Ivanov A, Oquist G, Huner N (2012) Thermoluminescence. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation, Advances in photosynthesis and respiration, vol 34. Springer, Dordrecht/New York, pp 445–474

    Chapter  Google Scholar 

  • Soltnev MK, Tashish V, Karavayev V, Khomutov A (1999) Specific action of iodine ions on the regulatory processes in photosynthetic membranes. Biophysics 40:1273–1275

    Google Scholar 

  • Skotnica J, Fiala J, Ilik P, Dvorak L (1999) Thermally induced chemiluminescence of barley leaves. Photochem Photobiol 69:211–217

    Article  CAS  PubMed  Google Scholar 

  • Stallaert VM, Ducruet JM, Tavernier E, Blein JP (1995) Lipid peroxidation in tobacco leaves treated with the elicitor cryptogein: evaluation by high-temperature thermoluminescence emission and chlorophyll fluorescence. Biochim Biophys Acta 1229:290–295

    Article  Google Scholar 

  • Sundblad LG, Schroder WP, Akerlung HE (1988) S-state distribution and redox state of QA in barley in relation to luminescence decay kinetics. Biochim Biophys Acta 973:47–52

    Article  Google Scholar 

  • Tatake VG, Desai TS, Bhattacharjee SK (1971) A variable temperature cryostat for thermoluminescence studies. J Physics E: Sci Instrum 4:755–762

    Article  CAS  Google Scholar 

  • Vass I, Horvath G, Herczeg T, Demeter S (1981) Photosynthetic energy conservation investigated by thermoluminescence. Activation energy and half life of thermoluminescence bands of chloroplasts determined by mathematical resolution of glow curves. Biochim Biophys Acta 634:140–152

    Article  CAS  PubMed  Google Scholar 

  • Vavilin DV, Ducruet JM (1998) The origin of 120–130°C thermoluminescence bands in chlorophyll-containing material. Photochem Photobiol 68:191–198

    CAS  Google Scholar 

  • Vavilin DV, Matorin DN, Kafarov RS, Bautina AL, Venediktov PS (1991) High temperature thermoluminescence of chlorophyll in lipid peroxidation. Biologich Membr 8:89–98

    Google Scholar 

  • Venediktov PS, Matorin DN, Kafarov RS (1989) Chemiluminescence of chlorophyll upon lipid photoperoxidation in thylakoid membranes. Biofizika (Moscow) 34:241–245

    CAS  Google Scholar 

  • Zeinalov Y, Maslenkova L (1996) A computerized equipment for thermoluminescence investigations. Bulg J Plant Physiol 22:88–94

    Google Scholar 

  • Zhang L, Xing D, Wang J (2007) A non-invasive and real-time monitoring of the regulation of photosynthetic metabolism biosensor based on measurement of delayed fluorescence in vivo. Sensors 7:52–66

    Article  CAS  Google Scholar 

  • Zurita JL, Roncel M, Aguilar M, Ortega JM (2005) A thermoluminescence study of photosystem II back electron transfer reactions in rice leaves – effects of salt stress. Photosynth Res 84:131–137

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.N. (2018). Thermoluminescence: A Tool to Study Ecophysiology of Green Plants. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_6

Download citation

Publish with us

Policies and ethics