Skip to main content

Visualization of Plant Microtubules

  • Chapter
  • First Online:
Book cover Advances in Plant Ecophysiology Techniques
  • 1858 Accesses

Abstract

Microtubules (MTs) are highly dynamic components of the cell cytoskeleton that are involved in many important processes such as cell division (chromosome movement, formation of preprophase band, phragmoplast, cortical band before preprophase, etc.), cellular transport (endocytosis, exocytosis, organelle movement: nuclei, chloroplasts, amyloplasts, etc.), and growth and differentiation (transport of cellulose precursors to the cell wall to form cellulose microfibrils, transition from division to expansion, stomata movement, etc.). Studying these cytoskeleton components is not only useful for understanding the mechanisms of cellular organization, but for understanding the response of cells to different stimuli that are known to change the microtubule array configuration. The knowledge of the microtubule dynamics opens the door to novel technical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Araniti F, Graña E, Krasuska U, Bogatek R, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras AM (2016) Loss of gravitropism in farnesene-treated Arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PLoS One 11(8):e0160202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels PG, Hilton JL (1973) Comparison of trifularin, oryzalin, pronamide, prophan and colchicines treatments on microtubules. Pestic Biochem Physiol 3:462–472

    Article  CAS  Google Scholar 

  • Bhaskara GB, Wen T-N, Nguyen TT, Versules PE (2016) Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell 29:169–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celler K, Fujita M, Kawamura E, Ambrose C, Herburger K, Holzinger A, Wasteneys GO (2016) Microtubules in plant cells: strategies and methods for immunofluorescence, transmission electron microscopy and live cell imaging. In: Gavin RH (ed) Cytoskeleton: methods and protocols, methods in molecular biology, vol 1365. pp 155–184

    Google Scholar 

  • Chen X, Grandont L, Li H, Hauschild R, Paque S, Abuzeineh A, Rakusová H, Benkova E, Perrot-Rechenmann C, Friml J (2014) Inhibition of cell expansion by rapid ABP-1 mediated auxin effect of microtubules. Nature 516:90–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collings DA, Wasteneys GO (2005) Actin microfilament and microtubule distribution in the expanding root of Arabidopsis thaliana. Can J Bot 83:579–590

    Article  Google Scholar 

  • Dayan FE, Hernandez A, Allen SN, Moraes RM, Vroman JA, Avery MA, Duke SO (1999) Comparative phytotoxicity of artemisin and several sesquiterpene analogues. Phytochemistry 50(607):614

    Google Scholar 

  • Dayan FE, Duke SO, Grossmann K (2010) Herbicides as probes in plant biology. Weed Sci 58(3):340–350

    Article  CAS  Google Scholar 

  • Donhauser ZJ, Jobs WB, Binka EC (2010) Mechanics of microtubules: effects of protofilament orientation. Biophys J 99(5):1668–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funada R (2008) Microtubules and the control of wood formation. In: Nick P (ed) Plant microtubules. Plant cell monographs, vol 11. Springer, Berlin, pp 83–119

    Google Scholar 

  • Gao Y, Valnberg IE, Chow RL, Cowan NJ (1993) Two cofactors and cytoplasmic chaperonin are required for the folding of α- and β-tubulin. Mol Cell Biol 13:2478–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard RH, Wick SM, Silflow CD, Snustad DP (1994) Microtubule components of the plant cell cytoskeleton. Plant Physiol 104:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Ho CK, Kong Z, Lee YR, Qian Q, Liu B (2009) Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot 103:387–402

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Wasteneys G, Lütz C (2007) Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna. Plant Biol 9(3):400–410

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Kawamura E, Wasteneys GO (2009) Strategies for imaging microtubules in plant cells. Methods Mol Biol 586:243–262

    Article  CAS  PubMed  Google Scholar 

  • Hyams JS, Lloyd CW (1994) Microtubules. Wiley, New York

    Google Scholar 

  • Jordan A, Hadfield JA, Lawrence NJ, McGown AT (1998) Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 18:259–296

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowska D (2006) Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry and growth. J Exp Bot 57:571–580

    Article  CAS  PubMed  Google Scholar 

  • Landrein B, Hamant O (2013) How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J 75:324–338

    Article  CAS  PubMed  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A ‘microtubule’ in plant cell fine structure. J Cell Biol 19:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnen LP Jr, Vaughn KC (1991) Immunofluorescence and electron microscopic investigations of the effects of ditiopyr on onion root tips. Pestic Biochem Physiol 40(1):58–67

    Article  CAS  Google Scholar 

  • Lehnen LP Jr, Vaughan MA, Vaughn KC (1990) Terbutol affects spindle microtubule organizing centers. J Exp Bot 41(5):537–546

    Article  CAS  Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao T, Jin L, Li H, Liu B, Yuan M (2005) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138:654–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marc J (1997) Microtubule-organizing center in plants. Trends Plant Sci 2(6):223–230

    Article  Google Scholar 

  • Mei Y, Gao HB, Yuan M, Xue HW (2012) The Arabidopsis ARCP protein, CSI1, which is required for microtubule stability, is necessary for root and anther development. Plant Cell 24:1066–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchison TJ, Kirschner MW (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  Google Scholar 

  • Nakamura M, Naoi K, Shoji T, Hashimoto T (2004) Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol 45(9):1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Nick P (2008a) Control of cell axis. In: Nick P (ed) Plant microtubules. Plant cell monographs, vol 11. Springer, Berlin, pp 3–46

    Google Scholar 

  • Nick P (2008b) Microtubules as sensors for abiotic stimuli. In: Nick P (ed) Plant microtubules. Plant cell monographs, vol 11. Springer, Berlin, pp 175–203

    Google Scholar 

  • Nick P (2013) Microtubules, signalling and abiotic stress. Plant J 75:309–323

    Article  CAS  PubMed  Google Scholar 

  • Oliva A, Moraes RM, Watson SB, Duke SO, Dayan FE (2002) Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic Biochem Physiol 72:45–54

    Article  CAS  Google Scholar 

  • Panteris E, Adamakis I-DS, Daras G, Hatzopoulos P, Rigas S (2013) Differential responsiveness of cortical microtubule orientation to suppression of cell expansion among the developmental zones of Arabidopsis thaliana root apex. PLoS One 8(12):e 82442

    Article  CAS  Google Scholar 

  • Reddy AS (2001) Molecular motors and their functions in plants. Int Rev Cytol 204:97–178

    Article  CAS  PubMed  Google Scholar 

  • Senseman SA (2007) In: Senseman SA (ed) Herbicide handbook, 9th edn. Weed Science Society of America, Lawrence

    Google Scholar 

  • Vaughn KC (2006) The abnormal cell plates formed after microtubule disrupter herbicide treatment are enriched in callose. Pestic Biochem Physiol 84:63–71

    Article  CAS  Google Scholar 

  • Vaughn KC, Harper JDI (1998) Microtubule organizing centers and nucleating sites in land plants. Int Rev Cytol 181:75–149

    Article  CAS  PubMed  Google Scholar 

  • Vaughn KC, Vaughan MA (1988) Mitotic disrupters from higher plants. In: Cutler HG (ed) Biologically active natural products: potential use in agriculture. ACS symposium series 380, Washington, DC. pp 273–293

    Google Scholar 

  • Vaughn KC, Marks MD, Weeks DP (1987) A dinitroaniline-resistant mutant of Eleusine indica exhibits cross-resistance and supersensitivity to antimicrotubule herbicides and drugs. Plant Physiol 83:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SH, Kurepa J, Hashimoto T, Smalle JA (2011) Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome dependent degradation of SPIRAL1. Plant Cell 23:3412–3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7(6):651–660

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci U S A 91:6050–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The implementation of these techniques was possible thanks to the invaluable assistance of Inés Pazos and Jesús Méndez from the Central Research Services (CACTI) of the University of Vigo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graña, E. (2018). Visualization of Plant Microtubules. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_17

Download citation

Publish with us

Policies and ethics