Skip to main content

Multidimensional Scaling

  • Chapter
  • First Online:
Modern Psychometrics with R

Part of the book series: Use R! ((USE R))

Abstract

Multidimensional scaling (MDS) a multivariate method, applicable to a variety of data scenarios. It aims to represent input proximities among objects, such as variables or persons, by means of fitted distances in a low-dimensional space. The chapter starts with general elaborations on proximities, followed by exploratory MDS using the SMACOF framework. Within this context, goodness-of-fit assessment in MDS is discussed in detail. Another section covers confirmatory MDS where it is distinguished between internal and external constraints on the configuration. What follows is a section on unfolding, a technique for dual scaling based on preference data. In the last part of this chapter, basic MDS is extended to multiple input dissimilarity matrices (individual differences scaling). In addition, Procrustes is introduced for matching multiple MDS configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The upper stress value is not trivial to determine (see De Leeuw and Stoop, 1984), but it cannot become larger than 1.

  2. 2.

    From now on, whenever we say “stress,” we are referring to “stress-1.”

  3. 3.

    Note that in the example above we had such an information about symptom regions by means of the DSM-IV clusters, but this was not anyhow incorporated into the model fit.

  4. 4.

    Fitting an exploratory MDS first and then using the resulting configurations as starting values are in general a good strategy, unless we have a starting solution that is based on a theory.

  5. 5.

    In the fMRI area, MDS applications fall under the umbrella term representational similarity analysis (see Sect. 14.5).

  6. 6.

    Details on how the dissimilarity matrices were assessed can be found in Vaziri-Pashkam and Xu (2017).

  7. 7.

    How these matrices are derived from the brain scans is described in detail in Sects. 14.2.4 and 14.5.

References

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (DSM-IV) (4th ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Bilsky, W., & Jehn, K. A. (2002). Organisationskultur und individuelle Werte: Belege für eine gemeinsame Struktur [Organizational culture and individual values: Evidence for a common structure]. In M. Myrtek (Ed.), Die Person im biologischen und sozialen Kontext [The person in biological and social context] (pp. 211–228). Göttingen: Hogrefe.

    Google Scholar 

  • Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Borg, I., & Lingoes, J. C. (1980). A model and algorithm for multidimensional scaling with external constraints on the distances. Psychometrika, 45, 25–38.

    Article  Google Scholar 

  • Borg, I., & Mair, P. (2017). The choice of initial configurations in multidimensional scaling: Local minima, fit, and interpretability. Austrian Journal of Statistics, 46, 19–32.

    Article  Google Scholar 

  • Borg, I., Groenen, P. J. F., Jehn, K. A., Bilsky, W., & Schwartz, S. H. (2011). Embedding the organizational culture profile into Schwartz’s theory of universals in values. Journal of Personnel Psychology, 10, 1–12.

    Article  Google Scholar 

  • Borg, I., Bardi, A., & Schwartz, S. H. (2017). Does the value circle exist within persons or only across persons? Journal of Personality, 85, 151–162.

    Article  Google Scholar 

  • Borg, I., Groenen, P. J. F., & Mair, P. (2018). Applied multidimensional scaling and unfolding (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Busing, F. M. T. A., Groenen, P. J. F., & Heiser, W. J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70, 71–98.

    Article  MathSciNet  Google Scholar 

  • Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283–319.

    Article  Google Scholar 

  • Carroll, J. D., & Wish, M. (1974). Models and methods for three-way multidimensional scaling. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology (Vol. II, pp. 57–105). San Francisco: Freeman.

    Google Scholar 

  • Cliff, N. (1973). Scaling. Annual Review of Psychology, 24, 473–506.

    Article  Google Scholar 

  • Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57, 145–158.

    Article  Google Scholar 

  • Coombs, C. H. (1964). A theory of data. New York: Wiley.

    Google Scholar 

  • Cox, T. F., & Cox, M. A. A. (1991). Multidimensional scaling on a sphere. Communications in Statistics: Theory and Methods, 20, 2943–2953.

    Article  MathSciNet  Google Scholar 

  • Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling (2nd ed.). Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • De Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In J. Barra, F. Brodeau, G. Romier, & B. van Cutsem (Eds.), Recent developments in statistics (pp. 133–145). Amsterdam: North Holland Publishing Company.

    Google Scholar 

  • De Leeuw, J., & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.), Multivariate analysis (Vol. V, pp. 501–522). Amsterdam: North Holland Publishing Company.

    Google Scholar 

  • De Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: SMACOF in R. Journal of Statistical Software, 31(3), 1–30. http://www.jstatsoft.org/v31/i03/

    Article  Google Scholar 

  • De Leeuw, J., & Mair, P. (2015). Shepard diagram. In Wiley statsRef: Statistics reference online. New York: Wiley. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118445112

  • De Leeuw, J., & Stoop, I. (1984). Upper bounds for Kruskal’s stress. Psychometrika, 49, 391–402.

    Article  Google Scholar 

  • Ekman, G. (1954). Dimensions of color vision. Journal of Psychology, 38, 467–474.

    Article  Google Scholar 

  • Elad, A., Keller, Y., & Kimmel, R. (2005). Texture mapping via spherical multidimensional scaling. In R. Kimmel, N. Sochen, & J. Weickert (Eds.), Scale space and PDE methods in computer vision (Lecture notes in computer science, Vol. 3459, pp. 443–455). Berlin: Springer.

    Chapter  Google Scholar 

  • Gower, J. C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 3, 5–48.

    Article  MathSciNet  Google Scholar 

  • Heiser, W. J., & Meulman, J. (1983). Constrained multidimensional scaling, including confirmation. Applied Psychological Measurement, 7, 381–404.

    Article  Google Scholar 

  • Hui, C. H., & Triandis, C. H. (1989). Effects of culture and response format on extreme response style. Journal of Cross-Cultural Psychology, 20, 296–309.

    Article  Google Scholar 

  • Jacoby, W. G., & Armstrong, D. A. (2014). Bootstrap confidence regions for multidimensional scaling solutions. American Journal of Political Science, 58, 264–278.

    Article  Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.

    Article  MathSciNet  Google Scholar 

  • Kruskal J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115–129.

    Article  MathSciNet  Google Scholar 

  • Mair, P., & De Leeuw, J. (2015). Unidimensional scaling. In Wiley statsRef: Statistics reference online. New York: Wiley.

    Google Scholar 

  • Mair, P., Rusch, T., & Hornik, K. (2014). The grand old party – A party of values? SpringerPlus 3. http://www.springerplus.com/content/3/1/697

    Article  Google Scholar 

  • Mair, P., De Leeuw, J., & Wurzer, M. (2015). Multidimensional unfolding. In Wiley statsRef: Statistics reference online. New York: Wiley.

    Google Scholar 

  • Mair, P., Borg, I., & Rusch, T. (2016). Goodness-of-fit assessment in multidimensional scaling and unfolding. Multivariate Behavioral Research, 51, 772–789.

    Google Scholar 

  • McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to posttraumatic stress disorder. Clinical Psychological Science, 3, 836–849.

    Article  Google Scholar 

  • Meyer, D., & Buchta, C. (2015). proxy: Distance and similarity measures. R package version 0.4–15. http://CRAN.R-project.org/package=proxy

  • O’Reilly, C. A., Chatman, J. A., & Caldwell, D. F. (1991). People and organizational culture: A profile comparison approach to assessing person-organization fit. Academy of Management Journal, 34, 487–516.

    Google Scholar 

  • Schwartz, S. H. (1992). Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. Advances in Experimental Social Psychology, 25, 1–62.

    Article  Google Scholar 

  • Schwartz, S. H., Sagiv, L., & Boehnke, K. (2000). Worries and values. Journal of Personality, 68, 309–346.

    Article  Google Scholar 

  • Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function I. Psychometrika, 27, 125–140.

    Article  MathSciNet  Google Scholar 

  • Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function II. Psychometrika, 27, 219–246.

    Article  MathSciNet  Google Scholar 

  • Spence, I., & Ogilvie, J. C. (1973). A table of expected stress values for random rankings in nonmetric multidimensional scaling. Multivariate Behavioral Research, 8, 511–517.

    Article  Google Scholar 

  • Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016). Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence. Proceedings of the National Academy of Sciences of the United States of America, 113, 194–199.

    Article  Google Scholar 

  • Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17, 401–419.

    Article  MathSciNet  Google Scholar 

  • Vaziri-Pashkam, M., & Xu, Y. (2017). Goal-directed visual processing differentially impacts human ventral and dorsal visual representations. The Journal of Neuroscience, 37, 8767–8782.

    Article  Google Scholar 

  • Weathers, F. W., Litz, B. T., Herman, D. S., Huska, J. A., & Keane, T. M. (1993). The PTSD checklist (PCL): Reliability, validity, and diagnostic utility. Paper presented at the meeting of the International Society for Traumatic Stress Studies, San Antonio.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mair, P. (2018). Multidimensional Scaling. In: Modern Psychometrics with R. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-93177-7_9

Download citation

Publish with us

Policies and ethics