Study of Gully Erosion in South Minas Gerais (Brazil) Using Fractal and Multifractal Analysis

  • Ligia de Freitas SampaioEmail author
  • Silvio Crestana
  • Valéria Guimarães Silvestre Rodrigues
Conference paper


Tropical countries experience intense rainfall; this natural process, associated with land use, influences or accelerates soil erosion due to changes in soil properties and water flow dynamics. Gullies are an expression of soil erosion caused by water and are considered an environmental problem, since their extents and depths reach hundreds of meters, and areas of gullies frequently become unusable. Gullies are present in most states of Brazil. The case study of this paper focuses on the watershed between the Grande River and Das Mortes River (in Nazareno, southern region of Minas Gerais). There are 96 gullies in this municipality in areas where the soil has low fertility and high erodibility; the origins of these gullies are linked to vegetation removal and gold mining in the 17th century, potentialized by non-conservationist farming practices and by runoff intensification due to inadequate road drainage systems. The studied Charuteiro stream watershed has 13 gullies within a 6.55 km2 area. Therefore, we used a box-counting method with two software packages to analyze the fractality and multifractality of these gullies. The vegetated gullies presented similar values for fractal dimension, while those with bare soil presented more variability. The multifractal spectrum for each gully in the study area was obtained; these soil erosion features do not show high complexity and heterogeneity. This analysis of watersheds with intense gully erosion is a novel and promising approach, enabling mathematical modeling and recovery projects to more closely reflect reality.


Gully Fractal Multifractal 



We acknowledge the National Council for Scientific and Technological Development (CNPq), Ph.D. scholarship process N. 141835/2015-0, for financial support. We also acknowledge the Brazilian Agricultural Research Corporation (Embrapa) and Tseng Chien Ling for their scientific support.


  1. Bertol, I., Schick, J., Bandeira, D.H., Paz-Ferreiro, J., Vidal Vázquez, E.: Multifractal and joint multifractal analysis of water and soil losses from erosion plots: a case study under subtropical conditions in Santa Catarina highlands, Brazil. Geoderma 287, 116–125 (2017). Scholar
  2. Casalí, J., Giménez, R., Campo-Bescós, M.A.: Gully geometry: what are we measuring? SOIL 1, 509–513 (2015). Scholar
  3. CODEMIG (Companhia De Desenvolvimento Econômico De Minas Gerais): Carta Geológica. Folha SF.23-X-C-I LAVRAS. Escala 1:100:000. Versão SIG. Projeto Sul de Minas – Etapa I. CODEMIG; Governo de Minas; Universidade Federal do Rio de Janeiro; Universidade Federal de Minas Gerais; Centro de Pesquisa Manoel Teixeira da Costa; Centro de Sensoriamento Remoto (2013)., Last accessed 2017/01/10
  4. Dantas, A.A.A., Carvalho, L.G., Ferreira, E.: Classificação e tendências climáticas em Lavras, MG. Ciênc. agrotec., Lavras, 31(6), 1862–1866 (2007)Google Scholar
  5. Embrapa (Empresa Brasileira de Pesquisa Agropecuária - Brazilian Agricultural Research Corporation): Levantamento de reconhecimento de média intensidade dos solos da Zona Campos das Vertentes – MG. Boletim de Pesquisa e Desenvolvimento 96. Embrapa Solos, Rio de Janeiro, Brazil, p. 326 (2006)Google Scholar
  6. Embrapa (Empresa Brasileira de Pesquisa Agropecuária—Brazilian Agricultural Research Corporation): Aplicação da Técnica Multifractal para Caracterização de Manejo do Solo. Documentos, 41. ISSN: 1518-7179 (2008)Google Scholar
  7. Feder, J.: Fractals (Physics of solids and liquids). Plenum Press, New York (1988)Google Scholar
  8. Ferreira, V.M.: Voçorocas no município de Nazareno, MG: origem, uso da terra e atributos do solo. Masters Dissertation, Federal University of Lavras, Brazil, p. 84 (2005)Google Scholar
  9. Ferreira, R.R.M.: Qualidade física de cambissolos sobre dois materiais de origem com pastagens extensivas. Doctoral Thesis, State University of Londrina, Brazil, p. 106 (2008)Google Scholar
  10. Ferreira, R.R.M., Tavares Filho, J., Ferreira, V.M., Ralisch, R.: Estabilidade física de solo sob diferentes manejos de pastagem extensiva em cambissolo. Semina: Ciências Agrárias, Londrina, 31(3), 531–538 (2010)Google Scholar
  11. Hu, M.G., Wang, J.F.: Multifractal analysis of global total column ozone image. In: AIP Conference Proceedings 1168, 390 (2009).
  12. Karperien, A.: FracLac for ImageJ. Homepage:, (2013). Last accessed 2017/09/04
  13. Liebovitch, L.S., Toth, T.A.: Fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A, 141(8, 9), 386–390 (1989).
  14. Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13, 634–649 (2009). Scholar
  15. Mandelbrot, B.B.: The fractal geometry of nature. Updated and augmented. W.H Freeman and Company, New York (1982)Google Scholar
  16. MASS—Multifractal Analysis and Scaling System 3.0.: Software developed by Centro Internacional de La Papa (CIP), with partial support by Directoraat Generaal voor Internationale Samenwerking (DGIS) of Netherlands (Ecoregional Fund). Provided by Embrapa (Brazilian Agricultural Research Corporation) in 2017Google Scholar
  17. Nunes, L.C.: Geocronologia, geoquímica isotópica e litoquímica do plutonismo diorítico-granítico entre Lavras e Conselheiro Lafaiete: implicações para a evolução paleoproterozóica da parte central do Cinturão Mineiro. Masters Dissertation, Instituto de Geociências, University of São Paulo, Brazil, p. 109 (2007)Google Scholar
  18. Oliveira, B.E.N., Matricardi, E.A.T., Chaves, H.M.L., Bias, E.S.: Identificação dos processos erosivos lineares no Distrito Federal através de fotografias aéreas e geoprocessamento. São Paulo, UNESP, Geociências 32(1), 152–165 (2013)Google Scholar
  19. Rasband, W.S., ImageJ, U.S.: National Institutes of Health, Bethesda, Maryland, USA. Homepage, (2016). Last accessed 2017/08/14
  20. Russell, D.A., Hanson, J.D., Ott, E.: Dimension of strange attractors. Phys. Rev. Lett. 45(14), 1175–1178 (1980). Scholar
  21. Silva, A.C.: Relação entre voçorocas e solos na região de Lavras (MG). Masters Dissertation, Escola Superior de Agricultura de Lavras (currently Federal University of Lavras), Brazil, p. 125 (1990)Google Scholar
  22. Szczepaniak, A., Macek, W.M.: Asymmetric multifractal model for solar wind intermitente turbulence. Nonlin. Process. Geophys. 15, 615–620 (2008). Scholar
  23. Tedesco, A., Antunes, A.F.B., Oliani, L.O.: Gully erosion detection by hierarchical classification and tree decision. Bol. Ciênc. Geod. 20(4), 1005–1026 (2014). Scholar
  24. Toledo, C.L.B.: Evolução geológica das rochas máficas e ultramáficas no Greenstone Belt Barbacena, região de Nazareno, MG. Doctoral Thesis, Instituto de Geociências, State University of Campinas, Brazil, p. 274 (2002)Google Scholar
  25. Vicsek, T.: Fractal growth phenomena, 2nd edn. World Scientific Publishing Co. Pte. Ltd. (1992)
  26. Wang, D.L., Yu, Z.G., Anh, V.: Multifractal analysis of complex networks. Chin. Phys. B, 21(8), 080504(1–11) (2012).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Brazilian Agricultural Research Corporation—EmbrapaSão CarlosBrazil

Personalised recommendations