Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 248 Accesses

Abstract

The era of colliders in particle physics started in the 1960-ties and has developed from MeV to TeV energies. It increased our knowledge and understanding of physics laws in the subnuclear domain at distance scales of about \(10^{-18}\) m. There are two families of colliders: linear colliders, where particles are accelerated in opposite directions and brought to collision at one interaction point, and circular colliders, where two particle beams are accelerated in opposite directions in a ring-shaped accelerator, stored and collided in particular “interaction points”. The interaction point is surrounded by dedicated particle detectors comprised of several subdetectors using a range of technologies. The information recorded from all subdetectors is used for the measurement of energies and momenta of almost all particles created in a collision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bennett et al. Design concept for a \(100\,GeV~e^{+}e^{-}\) storage ring (LEP), CERN 77-14 (1977)

    Google Scholar 

  2. H. Schopper, LEP-The Lord of the Collider Rings at CERN 1980-2000, Springer 2009, IBN 9788-3-540-89300-4

    Google Scholar 

  3. LEP Working groups, Large Electron-Positron Collider experiments, LEP, CERN-LEPC-97-11 (1996–2000)

    Google Scholar 

  4. The European Organization for Nuclear Research, https://home.cern/

  5. G. Wolf, HERA: Physics, Machine and Experiments. Springer, Boston, MA (1987) https://doi.org/10.1007/978-1-4684-5401-7_6

  6. G.A. Voss, B.H. Wiik, The electron-proton collider HERA. Annu. Rev. Nucl. Part. Sci. 44, 413–52 (1994)

    Google Scholar 

  7. DESY home page http://www.desy.de/about_desy/desy/index_eng.html

  8. R.S. Moore, Tevatron collider status and prospects. in Proceedings of the DPF-2009 Conference, Detroit, MI, (2009)

    Google Scholar 

  9. Fermilab home page, http://www.fnal.gov/pub/about/index.html

  10. S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Google Scholar 

  11. A. Salam, Elementary Particle Theory, ed. Svartholm, N., Almquist and Wiksell, Stockholm, 367 (1968)

    Google Scholar 

  12. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264 (1967)

    Google Scholar 

  13. G. Arnison et al., Experimental observation of lepton pairs of invariant mass aroud 95 GeV/c\(^2\) at the CERN SPS collider. Phys. Lett. B 125(5), 398–410 (1983)

    Google Scholar 

  14. G. Arnison et al., Experimental observation of isolated large transverse energy electrons with assiciated missing energy at \(\sqrt{s}=540 GeV\). Phys. Lett. B 122(1), 103–116 (1983)

    Google Scholar 

  15. P. Bagnaia et al., Evidence for \(Z~\rightarrow ~e^+e^-\)at the CERN anti-pp collider. Phys. Lett. B 129(5), 130–140 (1983)

    Google Scholar 

  16. P. Bagnaia et al., Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN anti-pp collider. Phys. Lett. B 122(5–6), 476–485 (1983)

    Google Scholar 

  17. The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Groups, Precision electroweak measurements on the Z resonance. Phys. Rept. 427, 257–454 (2006)

    Google Scholar 

  18. David J. Gross and Frank Wilczek, Ultraviolet behavior of non-abelian gauge theories, Phys. Rev. Lett. 30, 1343 Published 25 June 1973

    Google Scholar 

  19. H. David Politzer, Reliable perturbative results for strong interactions. Phys. Rev. Lett. 30, 1346 Published 25 June 1973

    Google Scholar 

  20. M. Peskin, D. Schroeder, An Introduction To Quantum Field Theory, Perseus Books Publishing (1995)

    Google Scholar 

  21. D0 Collaboration, Search for high mass top quark production in \(p\bar{p}\) Collisions at\(\sqrt{s} = 1.8 TeV\). Phys. Rev. Lett. 74(13), 2422–2426 (1995)

    Google Scholar 

  22. C.D.F. Collaboration, Observation of top quark production in \(p\bar{p}\) Collisions with the collider detector at fermilab. Phys. Rev. Lett. 74(14), 2626–2631 (1995)

    Google Scholar 

  23. D0 Collaboration, Design Report: The D0 Experiment at the Fermilab Antiproton—Proton Collider, FERMILAB-DESIGN-1984-02, Experiment: FNAL-E-0740 (1984)

    Google Scholar 

  24. CDF Collaboration, The CDF-II detector: Technical design report, FERMILAB-DESIGN-1996-01, FERMILAB-PUB-96-390-E, Experiment: FNAL-E-0741 (1996)

    Google Scholar 

  25. L. Evans, P. Bryant (eds.), LHC Machine (2008) JINST 3S08001

    Google Scholar 

  26. ATLAS Collaboration, Atlas detector and physics performance: Technical Design Report, Volume 1, CERN-LHCC-99-14, ATLAS-TDR-14

    Google Scholar 

  27. ATLAS Collaboration, Atlas detector and physics performance: Technical Design Report, Volume 2, CERN-LHCC-99-15, ATLAS-TDR-15

    Google Scholar 

  28. CMS Collaboration, CMS physics TDR (PTDR1), Detector Performance and Software, CERN-LHCC-2006-001

    Google Scholar 

  29. CMS Collaboration, The CMS experiment at LHC, JINST 3 (2008), https://doi.org/10.1088/1748-0221/3/08/S08004

  30. ALICE Collaboration, Technical Proposal for A Large Ion Collider Experiment at the CERN LHC, CERN/LHCC/95-71 (1995)

    Google Scholar 

  31. LHCb Collaboration, LHCb: Technical Proposal, CERN-LHCC-98-004 (1998)

    Google Scholar 

  32. The ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020. arXiv:1207.7214

  33. The CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021. arXiv:1207.7235

  34. H.J. Bhabha, The scattering of positrons by electrons with exchange on diracś theory of the positron. Proc. Roy. Soc. A154, 195 (1936)

    Google Scholar 

  35. S. van der Meer, Calibration of the Effective Beam Height in the ISR, CERN-ISR-PO-68-31 (1968)

    Google Scholar 

  36. CMS Collaboration, CMS Luminosity Based on Pixel Cluster Counting—Summer 2012 Update, CMS Physics Analysis Summary LUM-12-001 (2012)

    Google Scholar 

  37. CMS Collaboration, CMS Luminosity Measurement for the 2017 Data Taking Period, CMS Physics Analysis Summary LUM-17-004 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Karacheban .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karacheban, O. (2018). Thesis Introduction. In: Luminosity Measurement at the Compact Muon Solenoid Experiment of the LHC . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93139-5_1

Download citation

Publish with us

Policies and ethics