Skip to main content

Time-Delay Array Beamforming for Millimeter-Wave IoT Systems

  • 1460 Accesses

Abstract

This chapter discusses a scalable mixed-signal architecture for beamforming in time-delay arrays, where the time delays are realized by delaying the sampling clock of the receiver analog-to-digital converters. We derive the requirements on the timing correction and show how they are feasible in standard CMOS manufacturing processes. We then evaluate the impact of timing quantization of the array performance and compare the bit error rate (BER) performance of the proposed approach to phase arrays. For the same number of antennas, the BER of such an array is shown to be several orders of magnitudes lower than that of a phase array, especially at high fractional bandwidths. This chapter concludes by showing how a sub-picosecond requirement on time-delay generation for the beamformer is addressed using an antenna grouping strategy based on a hybrid architecture of a time and phase arrays. This architecture can relax the time correction requirements while enabling large arrays and fractional bandwidths with a modest BER penalty. Extensive simulations are used to evaluate the impact of antenna group sizes on the overall BER of the millimeter wave antenna system.

Keywords

  • Beamforming
  • Antenna system design
  • Phase arrays
  • Delay arrays
  • Millimeter wave
  • 5G communication
  • Automotive IoT

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93100-5_10
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-93100-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10
Fig. 10.11
Fig. 10.12
Fig. 10.13
Fig. 10.14
Fig. 10.15
Fig. 10.16

References

  1. S. Emami et al. A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications. 2011 IEEE International Solid-State Circuits Conference (ISSCC), pp. 164–166, San Francisco, CA, USA, Feb. 2011

    Google Scholar 

  2. Federal Communications Commission. Spectrum Frontiers Rules Identify, Open Up Vast Amounts of New High-Band Spectrum for Next Generation (5G) Wireless Broadband. https://apps.fcc.gov/edocs_public/attachmatch/DOC-340310A1.pdf

  3. T. Obara, T. Okuyama, Y. Aoki, S. Suyama, J. Lee and Y. Okumura. Indoor and outdoor experimental trials in 28-GHz band for 5G wireless communication systems. IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 846–850, Hong Kong, China, Sep. 2015

    Google Scholar 

  4. A. Harada, Y. Inoue, D. Kurita, T. Obara, 5G Trials with Major Global Vendors. NTT DOCOMO Technical Journal 17(4), 60–69 (2016)

    Google Scholar 

  5. J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C.R. Bhat, R.W. Heath, Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing. IEEE Communications Magazine 54(12), 160–167 (2016)

    CrossRef  Google Scholar 

  6. K. Takinami et al. A 60GHz wireless transceiver employing hybrid analog/digital beamforming with interference suppression for multiuser gigabit/s radio access. 2015 Symposium on VLSI Circuits (VLSI Circuits), pp. C306-C307, Kyoto, Japan, Jun. 2015

    Google Scholar 

  7. M. Tabesh et al. A 65nm CMOS 4-element Sub-34mW/element 60GHz phased-array transceiver. 2011 IEEE International Solid-State Circuits Conference (ISSCC), pp. 166–168, San Francisco, CA, USA, Feb. 2011

    Google Scholar 

  8. A. Niknejad, H. Hashemi. mm-Wave Silicon Technology 60GHz and Beyond. Chapter 7, pp. 250, Springer 2010

    Google Scholar 

  9. J. Roderick, H. Krishnaswamy, K. Newton, H. Hashemi, Silicon-Based Ultra-Wideband Beam-Forming. IEEE Journal of Solid-State Circuits (JSSC) 41(8), 1726–1739 (2006)

    CrossRef  Google Scholar 

  10. T. S. Chu, J. Roderick and H. Hashemi. A 4-Channel UWB Beam-Former in 0.13 \(\upmu \)m CMOS using a Path-Sharing True-Time-Delay Architecture. IEEE International Solid-State Circuits Conference. (ISSCC) Digest of Technical Papers, pp. 426–613, San Francisco, CA, USA, 2007

    Google Scholar 

  11. P. Hannan, The element-gain paradox for a phased-array antenna. IEEE Transactions on Antennas and Propagation 12(4), 423–433 (1964)

    CrossRef  Google Scholar 

  12. L.C. Godara, Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE 85(8), 1195–1245 (1997)

    CrossRef  Google Scholar 

  13. K. Poulton, M Flynn. GHz ADC: from exotic to mainstream. IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, Sep. 2010

    Google Scholar 

  14. J. McNeill, M.C.W. Coln, B.J. Larivee, “Split ADC” architecture for deterministic digital background calibration of a 16-bit 1-MS/s ADC. IEEE Journal of Solid-State Circuits (JSSC) 40(12), 2437–2445 (2005)

    CrossRef  Google Scholar 

  15. K. Hassan, T. S. Rappaport and J. G. Andrews. Analog Equalization for Low Power 60 GHz Receivers in Realistic Multipath Channels. IEEE Global Telecommunications Conference GLOBECOM 2010, pp. 1–5, Miami, FL, USA, Dec. 2010

    Google Scholar 

  16. I. Dedic. 56Gs/s ADC : Enabling 100GbE. Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, pp. 1–3, San Diego, CA, USA, 2010

    Google Scholar 

  17. S. Sievert et al. 2.9 A 2GHz 244fs-resolution 1.2ps-Peak-INL edge-interpolator-based digital-to-time converter in 28 nm CMOS. IEEE International Solid-State Circuits Conference (ISSCC), pp. 52–54, San Francisco, CA, USA, Feb. 2016

    Google Scholar 

  18. S. Callender and A. M. Niknejad. A phase-adjustable Delay-Locked Loop utilizing embedded phase interpolation. IEEE Radio Frequency Integrated Circuits Symposium, pp. 1–4, Baltimore, MD, USA, Jun. 2011

    Google Scholar 

  19. M. Straayer et al. 27.5 A 4GS/s time-interleaved RF ADC in 65nm CMOS with 4GHz input bandwidth. IEEE International Solid-State Circuits Conference (ISSCC), pp. 464–465, San Francisco, CA, USA, Feb. 2016

    Google Scholar 

  20. S. Emami, C. Corral and G. Rasor. Peak-to-average power ratio (PAPR), fractional bandwidth and processing gain of UWB schemes. Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738), pp. 929–933, Sydney, Australia, Sep. 2004

    Google Scholar 

  21. F.P. Fontan, P.M. Espineira, Modelling the Wireless Propagation Channel: A simulation approach with Matlab. Chapter 5, pp. 105, Wiley, 2008

    Google Scholar 

  22. O. T. Waheed, A. Shabra and I. M. Elfadel. Impact of Fractional Bandwidth on the Bit Error Rate of a Beamforming System. IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 225–228, Abu Dhabi, UAE, Oct. 2016

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Semiconductor Research Corporation (SRC) with customized funding from Mubadala Development Company, Abu Dhabi, UAE, under the 2011 Program on Minimum Energy Electronic Systems (MEES I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim (Abe) M. Elfadel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Waheed, O.T., Elian, A., Elfadel, I.(.M., Shabra, A. (2019). Time-Delay Array Beamforming for Millimeter-Wave IoT Systems. In: Elfadel, I., Ismail, M. (eds) The IoT Physical Layer. Springer, Cham. https://doi.org/10.1007/978-3-319-93100-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93100-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93099-2

  • Online ISBN: 978-3-319-93100-5

  • eBook Packages: EngineeringEngineering (R0)