Skip to main content

Model-Order Reduction Procedure for Fast Dynamic Electrothermal Simulation of Power Converters

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2017)

Abstract

Thermal Feedback Blocks represent an efficient means to perform thermal and electrothermal analyses of power converters, for which the adoption of strategies relying on 3-D numerical tools is too onerous or even impossible. In this work, we describe a RC-based thermal network extracted with a model-order reduction procedure improving the conventional Foster and Cauer solutions, which is used for the study of a DC/DC boost converter. The accuracy of the proposed approach is verified by comparing: (i) the output of purely-thermal simulations with those obtained through a commercial software based on the finite-element method, and (ii) electrothermal simulation results with measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breglio, G., et al.: Experimental detection and numerical validation of different failure mechanisms in IGBTs during unclamped inductive switching. IEEE Trans. Electron Devices 60(2), 563–570 (2013)

    Article  Google Scholar 

  2. d’Alessandro, V., et al.: Analysis of the UIS behavior of power devices by means of SPICE-based electrothermal simulations. Microelectron. Reliab. 53(9), 1713–1718 (2013)

    Article  Google Scholar 

  3. Yang, S., et al.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011)

    Article  Google Scholar 

  4. Zhan, Y., Kumar, S.V., Sapatnekar, S.S.: Thermally aware design. Found. Trends Electron. Design Autom. 2(3), 255–370 (2007)

    Article  Google Scholar 

  5. Batard, C., Ginot, N., Antonios, J.: Lumped dynamic electrothermal model of IGBT module of inverters. IEEE Trans. Compon. Packag. Manuf. Technol. 5(3), 355–364 (2015)

    Article  Google Scholar 

  6. d’Alessandro, V., et al.: Dynamic electrothermal macromodeling: an application to signal integrity analysis in highly integrated electronic systems. IEEE Trans. Compon. Packag. Manuf. Technol. 3(7), 1237–1243 (2013)

    Article  Google Scholar 

  7. Comsol Multiphysics, User’s Guide, release 5.2a, COMSOL AB. Stockholm, Sweden (2016)

    Google Scholar 

  8. Codecasa, L., D’Amore, D., Maffezzoni, P.: An Arnoldi based thermal network reduction method for electro-thermal analysis. IEEE Trans. Compon. Packag. Technol. 26(1), 186–192 (2003)

    Article  Google Scholar 

  9. Codecasa, L., D’Amore, D., Maffezzoni, P.: Compact modeling of electrical devices for electrothermal analysis. IEEE Trans. Circuits Syst. I 50(4), 465–476 (2003)

    Article  Google Scholar 

  10. Codecasa, L., et al.: FAst Novel Thermal Analysis Simulation Tool for Integrated Circuits (FANTASTIC). In: Proceedings of IEEE THERMINIC (2014)

    Google Scholar 

  11. Magnani, A., et al.: Analysis of the influence of layout and technology parameters on the thermal impedance of GaAs HBT/BiFET using a highly-efficient tool. In: Proceedings of IEEE CSICS (2014)

    Google Scholar 

  12. d’Alessandro, V., et al.: Dynamic electrothermal simulation of photovoltaic plants. In: Proceedings of IEEE ICCEP, pp. 682–688 (2015)

    Google Scholar 

  13. Mohan, N., Undeland, T.M.: Power Electronics: Converters, Applications, and Design. Wiley (2007)

    Google Scholar 

  14. Strollo, A.G.M.: A new SPICE model of power P-I-N diode based on asymptotic waveform evaluation. IEEE Trans. Power Electron. 12(1), 12–20 (1997)

    Article  Google Scholar 

  15. Strollo, A.G.M., Napoli, E.: Power rectifier model including self-heating effects. Microelectron. Reliab. 38(12), 1899–1906 (1998)

    Article  Google Scholar 

  16. Kraus, R., Turkes, P., Sigg, J.: Physics-based models of power semiconductor devices for the circuit simulator SPICE. In: Proceedings of IEEE PESC, pp. 1726–1731 (1998)

    Google Scholar 

  17. Azar, R., et al.: Advanced SPICE modeling of large power IGBT modules. IEEE Trans. Ind. Appl. 40(3), 710–716 (2004)

    Article  MathSciNet  Google Scholar 

  18. Riccio, M., et al.: Compact electro-thermal modeling and simulation of large area multicellular Trench-IGBT. In: Proceedings of IEEE MIEL, pp. 379–382 (2010)

    Google Scholar 

  19. Cavaiuolo, D., et al.: A robust electro-thermal IGBT SPICE model: application to short-circuit protection circuit design. Microelectron. Reliab. 55(9), 1971–1975 (2015)

    Article  Google Scholar 

  20. Riccio, M., et al.: Accurate SPICE modeling of reverse-conducting IGBTs including self-heating effects. IEEE Trans. Power Electron. 32(4), 3088–3098 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Catalano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Catalano, A.P. et al. (2019). Model-Order Reduction Procedure for Fast Dynamic Electrothermal Simulation of Power Converters. In: De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2017. Lecture Notes in Electrical Engineering, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-93082-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93082-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93081-7

  • Online ISBN: 978-3-319-93082-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics