Evolution and Body Plans, as Nature Designs

  • Sandra Persiani


Nature optimizes and adapts by intervening on two different scales of design: optimization of the process and accumulation of single optimized solutions.

Optimisation through process is achieved by Evolution;

Optimisation through single solutions is achieved by producing a vast variety of combinations of characters.

These can be represented by identifying recurring patterns of solutions. This chapter aims to discuss adaptive design principles and to build up a systematic framework for the further deepening of patterns of solutions in the next chapters.


  1. Alexander C, Ishikawa S, Silverstein M (1977) A pattern language. Towns, buildings, construction, 1st edn. Oxford University Press, New YorkGoogle Scholar
  2. Arthur W (1997) The origin of animal body plans: a study in evolutionary developmental biology. Cambridge University Press, Cambridge UKCrossRefGoogle Scholar
  3. Art Science Museum (2017) Human + the future of our species. Singapore August–October 2017Google Scholar
  4. Borst A. Egelhaaf M (1989) Principles of visual motion detection. Trends in Neurosciences, vol 12CrossRefGoogle Scholar
  5. Dawkins R (1996) The blind watchmaker, why the evidence of evolution reveals a universe without design. W.W. Norton & Company, Inc., New York. ISBN 0-393-31570-3Google Scholar
  6. Fuller RB, Applewhite EJ (1982) Synergetics, explorations in the geometry of thinking (n.d.). Macmillian, New YorkGoogle Scholar
  7. Goldspink G (1981) The use of muscles during flying, swimming, and running from the point of view of energy saving. In: Day MH (ed) Vertebrate locomotion, symposia of the Zoological Society of London, nr.48, Academic Press Inc., London, UK. ISBN 0-12-613348-4Google Scholar
  8. Gruber P (2011) Biomimetics in architecture, architecture of life and buildings. Springer-Verlag, Wien. ISBN 978-3-7091-0331-9CrossRefGoogle Scholar
  9. Hoefer C (2010) Causal determinism, stanford encyclopedia of philosophy. Accessed 2 March 2015 from
  10. Latthe SS, Terashima C, Nakata K, Fujishima A (2014) Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19(4):4256–4283CrossRefGoogle Scholar
  11. Lynn G (2004) The future of architecture and philosophy. Public open video lecture, Saas Fee, Switzerland: Faculty of European Graduate School EGS, Media and Communication Studies, from
  12. Lynn, G. (2008). Form. Rizzoli International Publications, IncGoogle Scholar
  13. Madrazo Agudin L (1995) The concept of type in architecture, an inquiry into the nature of architectural form. Dissertation ETH Zurich No. 11115, from
  14. Mandelbrot B (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  15. Menges A, Hensel M (2008) Morpho-ecologies. Architectural Association, LondonGoogle Scholar
  16. Menon C, Murphy M, Sitti M (2004) WaalBots: miniature wall climbing robots for space applications. In: Proceedings of the international astronautical congress, Vancouver, Canada, 4–8 October 2004. Accessed 27 September 2017 from
  17. Nachtigall W (2000) Das Große Buch der Bionik, Neue Technologien nach dem Vorbild der Natur, Deutsche Verlags-Anstalt, Stuttgart/München.Google Scholar
  18. Nachtigall W (2003) Bau-Bionik, Natur – Analogien - Technik. Springer-Verlag, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  19. Nigg BM, Stefanyshyn D, Denoth J (2000) Mechanical considerations of work and energy. In: Nigg BM, MacIntosh BR, Mester J (eds) Biomechanics and biology of movement. Human kinetics, Champaign, IllGoogle Scholar
  20. Phylogeny (2015) Merriam-Webster dictionary, Encyclopedia Britannica. Accessed 1 March 2015
  21. Reichl L, Schechter R, Sudarshan G (2004) Report of the memorial resolution committee for Ilya Prigogine, University of Texas Austin. Accessed 2 March 2015 from
  22. Schmidt-Nielsen K (2004) Scaling, why is animal size so important? Cambridge University Press, Cambridge, UK, (1 ed.1984). ISBN 0-521-31987-0Google Scholar
  23. Stein R, Zehr EP, Bobet J (2000) Basic concepts of movement control. In: Nigg BM, MacIntosh BR, Mester J (eds) Biomechanics and biology of movement. Human kinetics. Champaign, IllGoogle Scholar
  24. Thompson D’AW (2006) On growth and form. Cambridge University Press, 1961 (Trans: Albus A). Eichborn AG, Frankfurt am MainGoogle Scholar
  25. Valentine JW (2004) On the origin of phyla. The University of Chicago Press, Chicago and London. ISBN 0-226-84548-6Google Scholar
  26. Wolpert L, Tickle C, et al (2011) Principles of development, 4th ed. Oxford University PressGoogle Scholar
  27. Zinsmeister A (Hg/Ed) (2011) Gestalt der Bewegung/figure of motion, jovis Verlag GmbH, BerlinGoogle Scholar
  28. Zuk W, Clark RH (1970). Kinetic architecture (n.d.). VanNostrand Reinhold, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of ArchitectureTechnical University of MunichMunichGermany

Personalised recommendations