Skip to main content

Big Data for the Greater Good: An Introduction

Part of the Studies in Big Data book series (SBD,volume 42)

Abstract

Big Data, perceived as one of the breakthrough technological developments of our times, has the potential to revolutionize essentially any area of knowledge and impact on any aspect of our life. Using advanced analytics techniques such as text analytics, machine learning, predictive analytics, data mining, statistics, and natural language processing, analysts, researchers, and business users can analyze previously inaccessible or unusable data to gain new insights resulting in better and faster decisions, and producing both economic and social value; it can have an impact on employment growth, productivity, the development of new products and services, traffic management, spread of viral outbreaks, and so on. But great opportunities also bring great challenges, such as the loss of individual privacy. In this chapter, we aim to provide an introduction into what Big Data is and an overview of the social value that can be extracted from it; to this aim, we explore some of the key literature on the subject. We also call attention to the potential ‘dark’ side of Big Data, but argue that more studies are needed to fully understand the downside of it. We conclude this chapter with some final reflections.

Keywords

  • Big data
  • Analytics
  • Social value
  • Privacy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93061-9_1
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-93061-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3

References

  1. R. Agarwal, G. Gao, C. DesRoches, A.K. Jha, Research commentary—the digital transformation of healthcare: current status and the road ahead. Inf. Syst. Res. 21(4), 796–809 (2010)

    CrossRef  Google Scholar 

  2. B. Baesens, R. Bapna, J.R. Marsden, J. Vanthienen, J.L. Zhao, Transformational issues of big data and analytics in networked business. MIS Q. 40(4), 807–818 (2016)

    CrossRef  Google Scholar 

  3. B. Barrett, I. Nitze, S. Green, F. Cawkwell, Assessment of multi-temporal, multisensory radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens. Environ. 152(2), 109–124 (2014)

    CrossRef  Google Scholar 

  4. W. Bastiaanssen, D. Molden, I. Makin, Remote sensing for irrigated agriculture: examples from research and possible applications. Agric. Water Manage. 46(2), 137–155 (2000)

    CrossRef  Google Scholar 

  5. M.A. Beyer, D. Laney, The Importance of ‘Big Data’: A Definition, META Group (now Gartner) [online] (2012) https://www.gartner.com/doc/2057415/importance-big-data-definition. Accessed 10 Aug 2017

  6. T. Bodenheimer, High and rising health care costs. Part 1: seeking an explanation. Ann. Intern. Med. 142(10), 847–854 (2005)

    CrossRef  Google Scholar 

  7. E. Brynjolfsson, A. Saunders, Wired for Innovation (The MIT Press, Cambridge, MA, How Information Technology is Reshaping the Economy, 2010)

    Google Scholar 

  8. T.G. Cech, T.K. Spaulding, J.A. Cazier, in Proceedings of the Twenty-First Americas Conference on Information Systems. Applying business analytic methods to improve organizational performance in the public school system, Puerto Rico, 13–15 Aug (2015)

    Google Scholar 

  9. V. Charles, T. Gherman, Achieving competitive advantage through big data. Strategic implications. Middle-East. J. Sci. Res. 16(8), 1069–1074 (2013)

    Google Scholar 

  10. V. Charles, M. Tavana, T. Gherman, The right to be forgotten—is privacy sold out in the big data age? Int. J. Soc. Syst. Sci. 7(4), 283–298 (2015)

    CrossRef  Google Scholar 

  11. I.D. Constantiou, J. Kallinikos, New games, new rules: big data and the changing context of strategy. J. Inf. Technol. 30(1), 44–57 (2015)

    CrossRef  Google Scholar 

  12. J.W. Cortada, D. Gordon, B. Lenihan, The Value of Analytics in Healthcare: From Insights to Outcomes (IBM Global Business Services, Somers, NY, 2012)

    Google Scholar 

  13. M. Cox, D. Ellsworth, in Proceedings of the 8th IEEE Conference on Visualization. Application-controlled demand paging for out-of-core visualization (IEEE Computer Society Press, Los Alamitos, CA, 1997)

    Google Scholar 

  14. T.H. Davenport, P. Barth, R. Bean, How ‘big data’ is different. MIT Sloan Manage. Rev. 54(1), 43–46 (2012)

    Google Scholar 

  15. L. Einav, J.D. Levin, ‘The Data Revolution and Economic Analysis’, Prepared for NBER Innovation Policy and the Economy Conference [online] April (2013) http://www.nber.org/papers/w19035.pdf. Accessed 30 June 2018

  16. A. Emrouznejad, Big Data Optimization: Recent Developments and Challenges. In the series of “Studies in Big Data”, Springer. ISBN: 978-3-319-30263-8 (2016)

    Google Scholar 

  17. J. Enck, T. Reynolds Network Developments in Support of Innovation and User Needs, No. 164, (OECD Publishing, 2009)

    Google Scholar 

  18. R.G. Fichman, B.L. Dos Santos, Z. Zheng, Digital innovation as a fundamental and powerful concept in the information systems curriculum. MIS Q. 38(2), 329–353 (2014)

    CrossRef  Google Scholar 

  19. R. Frelat et al., Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl. Acad. Sci. U.S. Am. 113(2), 458–463 (2016)

    CrossRef  Google Scholar 

  20. C.B. Frey, M.A. Osborne, The Future of Employment: How susceptible are jobs to computerization? (Oxford Martin Programme on the Impacts of Future Technology, Oxford, 2013)

    Google Scholar 

  21. R. Galliers, S. Newell, G. Shanks, H. Topi, Call for papers for the special issue: the challenges and opportunities of ‘datification’; Strategic impacts of ‘big’ (and ‘small’) and real time data—for society and for organizational decision makers. J. Strateg. Inf. Syst. 24, II–III (2015)

    Google Scholar 

  22. C.M. Gillan, R. Whelan, What big data can do for treatment in psychiatry. Curr. Opin. Behav. Sci. 18, 34–42 (2017)

    CrossRef  Google Scholar 

  23. J.M. Goh, G. Gao, R. Agarwal, Evolving work routines: adaptive routinization of in-formation technology in healthcare. Inf. Syst. Res. 22(3), 565–585 (2011)

    CrossRef  Google Scholar 

  24. W.A. Günther, M.H. Rezazade Mehrizi, M. Huysman, F. Feldberg, Debating big data: a literature review on realizing value from big data. J. Strateg. Inf. Syst. 26, 191–209 (2017)

    CrossRef  Google Scholar 

  25. K.J. Hammond, ‘The value of big data isn’t the data’, Harvard Business Review, May [online] (2013) http://blogs.hbr.org/cs/2013/05/the_value_of_big_data_isnt_the.html. Accessed 13 July 2017

  26. I. Hashem et al., The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    CrossRef  Google Scholar 

  27. R. Herschel, V.M. Miori, Ethics and big data. Technol. Soc. 49, 31–36 (2017)

    CrossRef  Google Scholar 

  28. IBM, The Four V’s of Big Data. [online] http://www.ibmbigdatahub.com/infographic/four-vs-big-data. Accessed 30 June 2018

  29. Technology Advice, The Four V’s of Big Data [online] (2013) https://technologyadvice.com/blog/information-technology/the-four-vs-of-big-data/. Accessed 20 July 2017

  30. IBM, What is Big Data? [online] (2016) https://www.ibm.com/analytics/hadoop/big-data-analytics. Accessed 20 Nov 2017

  31. Á. Jóźwiaka, M. Milkovics, Z. Lakne, A network-science support system for food chain safety: a case from Hungarian cattle production. Int. Food Agribusiness Manage. Rev. Special Issue, 19(A) (2016)

    Google Scholar 

  32. J. Kallinikos, Governing Through Technology: Information Artefacts and Social Practice. (Palgrave Macmillan, Basingstoke, UK, 2011)

    CrossRef  Google Scholar 

  33. A. Kamilaris, A. Kartakoullis, F.X. Prenafeta-Boldu, A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37 (2017)

    CrossRef  Google Scholar 

  34. C. Kempenaar et al., Big Data Analysis for Smart Farming, vol. 655 (Wageningen University & Research, s.l., 2016)

    Google Scholar 

  35. J.I. Ker, Y. Wang, M.N. Hajli, J. Song, C.W. Ker, Deploying lean in healthcare: evaluating information technology effectiveness in US hospital pharmacies. Int. J. Inf. Manage. 34(4), 556–560 (2014)

    CrossRef  Google Scholar 

  36. G.-H. Kim, S. Trimi, J.-H. Chung, Big data applications in the government sector. Commun. ACM. 57(3), 78–85 (2014).

    CrossRef  Google Scholar 

  37. D. Laney, 3D Data Management: controlling data volume, velocity and variety. Applications delivery strategies, META Group (now Gartner) [online] (2001) http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf. Accessed 1 Aug 2017

  38. C. Loebbecke, A. Picot, Reflections on societal and business model transformation arising from digitization and big data analytics: a research agenda. J. Strateg. Inf. Syst. 24(3), 149–157 (2015). https://doi.org/10.1016/j.jsis.2015.08.002

    CrossRef  Google Scholar 

  39. C. Magnin, How big data will revolutionize the global food chain [online] (McKinsey & Company, 2016). https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/how-big-data-will-revolutionize-the-global-food-chain. Accessed 13 December 2017

  40. L. Markus, New games, new rules, new scoreboards: the potential consequences of big data. J. Inf. Technol. 30(1), 58–59 (2015)

    CrossRef  Google Scholar 

  41. M.L. Markus, Information Technology and Organizational Structure, in Information Systems and Information Technology, Computing Handbook, ed. by H. Topi, A. Tucker, vol. Ii. (Chapman and Hall, CRC Press, 2014), p. 67, 61–22

    Google Scholar 

  42. M.L. Markus, M.S. Silver, A foundation for the study of It effects: a new look at desanctis and poole’s concepts of structural features and spirit. Journal of the AIS, 9(10/11), 609–632 (2008).

    CrossRef  Google Scholar 

  43. M.L. Markus, A. Dutta, C.W. Steinfield, R.T. Wigand, The Computerization Movement in the Us Home Mortgage Industry: Automated underwriting from 1980 to 2004, in Computerization Movements and Technology Diffusion: From mainframes to ubiquitous computing, ed. by K.L. Kraemer, M.S. Elliott (Information Today, Medford, NY, 2008), pp. 115–144

    Google Scholar 

  44. A. McAfee, E. Brynjolfsson, Big data: the management revolution. Harvard Bus. Rev. 90(10), 60–68 (2012)

    Google Scholar 

  45. McKinsey Global Institute, Game changers: five opportunities for US growth and renewal, [online] July (2013), http://www.mckinsey.com/insights/americas/us_game_changers. Accessed 13 Dec 2017

  46. E. Miluzzo, M. Papandrea, N.D. Lane, A.M. Sarroff, S. Giordano, A.T. Campbell, In Proceedings of 1st International Symposium on from Digital Footprints to Social and Community Intelligence. Tapping into the vibe of the city using vibn, a continuous sensing application for smartphones (Beijing, China: ACM, 2011), pp. 13–18

    Google Scholar 

  47. S. Nativi et al., Big data challenges in building the global earth observation system of systems. Environ. Model Softw. 68(1), 1–26 (2015)

    CrossRef  Google Scholar 

  48. S. Newell, M. Marabelli, Strategic opportunities (and challenges) of algorithmic decision-making: a call for action on the long-term societal effects of ‘datafication’. J. Strateg. Inf. Syst. 24(1), 3–14 (2015). https://doi.org/10.1016/j.jsis.2015.02.001

    CrossRef  Google Scholar 

  49. F. Ohlhorst, Big Data Analytics: Turning Big Data into Big Money (Wiley, Hoboken, NJ, 2013)

    Google Scholar 

  50. Z.A. Pardos, Big data in education and the models that love them. Curr. Opin. Behav. Sci. 18, 107–113 (2017)

    CrossRef  Google Scholar 

  51. I.d.S. Pool, Forecasting the Telephone: A Retrospective Technology Assessment of the Telephone (Ablex, Norwood, NJ, 1983)

    Google Scholar 

  52. W. Raghupathi, V. Raghupathi, Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2(3), 1–10 (2014). https://doi.org/10.1186/2047-2501-2-3

    CrossRef  Google Scholar 

  53. H. Rahman, D. Sudheer Pamidimarri, R. Valarmathi, M. Raveendran, Omics: Applications in Biomedical (CRC PressI Llc, Agriculture and Environmental Sciences, s.l, 2013)

    Google Scholar 

  54. G. Secundo, P. Del Vecchio, J. Dumay, G. Passiante, Intellectual capital in the age of big data: establishing a research agenda. J. Intellect. Capital 18(2), 242–261 (2017)

    CrossRef  Google Scholar 

  55. R. Senanayake, Sustainable agriculture: definitions and parameters for measurement. J. Sustain. Agric. 1(4), 7–28 (1991)

    CrossRef  Google Scholar 

  56. M.S. Silver, Systems That Support Decision Makers: Description and analysis (John Wiley & Sons, Chichester, UK, 1991)

    Google Scholar 

  57. T. Sparapani, How Big Data and Tech Will Improve Agriculture, from Farm to Table. [online] (Forbes, 2017). https://www.forbes.com/sites/timsparapani/2017/03/23/how-big-data-and-tech-will-improve-agriculture-from-farm-to-table/#503f16c25989. Accessed 13 December 2017

  58. K. Tesfaye et al., Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data. Int Food Agribusiness Manage. Rev. 19(A), 1–18 (2016)

    Google Scholar 

  59. The Government Office for Science, Foresight: The Future of Computer Trading in Financial Markets (Final Project Report, London, 2010)

    Google Scholar 

  60. A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, J. Eriksson, in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems. Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones (ACM, Berkeley, California, 2009), pp. 85–98

    Google Scholar 

  61. A.C. Tyagi, Towards a second green revolution. Irrig. Drainage 65(4), 388–389 (2016)

    CrossRef  Google Scholar 

  62. N. Ungerleider, IBM’s Watson is ready to see you now—in your dermatologist’s office. Fast Company [online] May (2014) http://www.fastcompany.com/3030723/ibms-watson-is-ready-to-see-you-now-in-yourdermatologists-office. Accessed 10 January 2018

  63. G. Waldhoff, C. Curdt, D. Hoffmeister, G. Bareth, Analysis of multitemporal and multisensor remote sensing data for crop rotation mapping. Int. Arch. Photogrammetry Remote Sensing Spat. Inf. Sci. 25(1), 177–182 (2012)

    Google Scholar 

  64. Y. Wang, L. Kung, T.A. Byrd, Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 126, 3–13 (2018)

    CrossRef  Google Scholar 

  65. Y. Wang, L. Kung, C. Ting, T.A. Byrd, in 2015 48th Hawaii International Conference. Beyond a technical perspective: understanding big data capabilities in health care. System Sciences (HICSS) (IEEE, 2015), pp. 3044–3053

    Google Scholar 

  66. H.J. Watson, Tutorial: big data analytics: concepts, technologies, and applications. Commun. Assoc. Inf. Syst. 34(1), 1247–1268 (2014)

    Google Scholar 

  67. P. Weill, S. Woerner, Thriving in an increasingly digital ecosystem. MIT Sloan Manage. Rev. 56(4), 27–34 (2015)

    Google Scholar 

  68. Why Walmart Always Stocks Up On Strawberry Pop-Tarts Before a Hurricane (2017). [online] August (2014) http://www.countryliving.com/food-drinks/a44550/walmart-strawberry-pop-tarts-before-hurricane/. Accessed 10 January 2018

  69. S. Wolfert, L. Ge, C. Verdouw, M.J. Bogaardt, Big data in smart farming—a review. Agric. Syst. 153, 69–80 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Charles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Charles, V., Emrouznejad, A. (2019). Big Data for the Greater Good: An Introduction. In: Emrouznejad, A., Charles, V. (eds) Big Data for the Greater Good. Studies in Big Data, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-93061-9_1

Download citation