Skip to main content

Clustering of Multiple Density Peaks

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10939)

Abstract

Density-based clustering, such as Density Peak Clustering (DPC) and DBSCAN, can find clusters with arbitrary shapes and have wide applications such as image processing, spatial data mining and text mining. In DBSCAN, a core point has density greater than a threshold, and can spread its cluster ID to its neighbours. However, the core points selected by one cut/threshold are too coarse to segment fine clusters that are sensitive to densities. DPC resolves this problem by finding a data point with the peak density as centre to develop a fine cluster. Unfortunately, a DPC cluster that comprises only one centre may be too fine to form a natural cluster. In this paper, we provide a novel clustering of multiple density peaks (MDPC) to find clusters with arbitrary number of regional centres with local peak densities through extending DPC. In MDPC, we generate fine seed clusters containing single density peaks, and form clusters with multiple density peaks by merging those clusters that are close to each other and have similar density distributions. Comprehensive experiments have been conducted on both synthetic and real-world datasets to demonstrate the accuracy and effectiveness of MDPC compared with DPC, DBSCAN and other base-line clustering algorithms.

Keywords

  • Clustering
  • Density peaks
  • Cluster merge

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93040-4_33
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-93040-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Basalto, N., Bellotti, R., De Carlo, F., Facchi, P., Pantaleo, E., Pascazio, S.: Hausdorff clustering. Phys. Rev. E 78(4), 046112 (2008)

    MathSciNet  CrossRef  Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, vol. 55 (1998). http://www.ics.uci.edu/~mlearn/mlrepository.html

  3. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    CrossRef  Google Scholar 

  4. Cho, M., MuLee, K.: Authority-shift clustering: hierarchical clustering by authority seeking on graphs. In: CVPR, pp. 3193–3200. IEEE (2010)

    Google Scholar 

  5. Du, M., Ding, S., Xue, Y.: A robust density peaks clustering algorithm using fuzzy neighborhood. Int. J. Mach. Learn, Cyb (2017). https://doi.org/10.1007/s13042-017-0636-1

    CrossRef  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: SIGKDD, pp. 226–231 (1996)

    Google Scholar 

  7. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    MathSciNet  CrossRef  Google Scholar 

  8. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8(1), 3 (2007)

    CrossRef  Google Scholar 

  9. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    MathSciNet  CrossRef  Google Scholar 

  10. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1), 4 (2007)

    CrossRef  Google Scholar 

  11. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_1

    CrossRef  Google Scholar 

  12. Liang, Z., Chen, P.: Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering. Pattern Recogn. Lett. 73, 52–59 (2016)

    CrossRef  Google Scholar 

  13. Ray, S., Turi, R.H.: Determination of number of clusters in k-means clustering and application in colour image segmentation. In: ICAPRDT, Calcutta, India, pp. 137–143 (1999)

    Google Scholar 

  14. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    CrossRef  Google Scholar 

  15. Shi, Y., Chen, Z., Qi, Z., Meng, F., Cui, L.: A novel clustering-based image segmentation via density peaks algorithm with mid-level feature. Neural Comput. Appl. 28(1), 29–39 (2017)

    CrossRef  Google Scholar 

  16. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.L., Hao, H.: Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing 174, 806–814 (2016)

    CrossRef  Google Scholar 

  18. Yang, H., Zhao, D., Cao, L., Sun, F.: A precise and robust clustering approach using homophilic degrees of graph kernel. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 257–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31750-2_21

    CrossRef  Google Scholar 

  19. Yaohui, L., Zhengming, M., Fang, Y.: Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy. Knowl.-Based Syst. 133, 208–220 (2017)

    CrossRef  Google Scholar 

  20. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 100(1), 68–86 (1971)

    CrossRef  Google Scholar 

Download references

Acknowledgement

This work was partially supported by Australia Research Council (ARC) DECRA Project (DE140100387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borui Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cai, B. et al. (2018). Clustering of Multiple Density Peaks. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93040-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)