Skip to main content

Emotion Classification with Data Augmentation Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10939))

Included in the following conference series:

Abstract

It is a difficult task to classify images with multiple class labels using only a small number of labeled examples, especially when the label (class) distribution is imbalanced. Emotion classification is such an example of imbalanced label distribution, because some classes of emotions like disgusted are relatively rare comparing to other labels like happy or sad. In this paper, we propose a data augmentation method using generative adversarial networks (GAN). It can complement and complete the data manifold and find better margins between neighboring classes. Specifically, we design a framework using a CNN model as the classifier and a cycle-consistent adversarial networks (CycleGAN) as the generator. In order to avoid gradient vanishing problem, we employ the least-squared loss as adversarial loss. We also propose several evaluation methods on three benchmark datasets to validate GAN’s performance. Empirical results show that we can obtain 5%–10% increase in the classification accuracy after employing the GAN-based data augmentation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-performance neural networks for visual object classification. arXiv preprint arXiv:1102.0183 (2011)

  3. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)

    Google Scholar 

  4. Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Static facial expression analysis in tough conditions: data, evaluation protocol and benchmark. In: ICCV Workshops, pp. 2106–2112. IEEE (2011)

    Google Scholar 

  5. Dixit, M., Kwitt, R., Niethammer, M., Vasconcelos, N.: AGA: attribute guided augmentation. arXiv preprint arXiv:1612.02559 (2016)

  6. Goh, S.T., Rudin, C.: Box drawings for learning with imbalanced data. In: Proceedings of the 20th ACM SIGKDD, pp. 333–342. ACM (2014)

    Google Scholar 

  7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  8. Goodfellow, I.J., et al.: Challenges in representation learning: a report on three machine learning contests. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8228, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42051-1_16

    Chapter  Google Scholar 

  9. Hauberg, S., Freifeld, O., Larsen, A.B.L., Fisher, J., Hansen, L.: Dreaming more data: class-dependent distributions over diffeomorphisms for learned data augmentation. In: Artificial Intelligence and Statistics, pp. 342–350 (2016)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  13. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2009)

    Google Scholar 

  14. Liu, Y., Qin, Z., Luo, Z., Wang, H.: Auto-painter: cartoon image generation from sketch by using conditional generative adversarial networks. arXiv preprint arXiv:1705.01908 (2017)

  15. Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J., Budynek, J.: The Japanese female facial expression (JAFFE) database. In: Proceedings of Third International Conference on Automatic Face and Gesture Recognition, pp. 14–16 (1998)

    Google Scholar 

  16. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  17. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. arXiv preprint arXiv:1611.04076 (2016)

  18. Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 443–449. ACM (2015)

    Google Scholar 

  19. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  20. Rogez, G., Schmid, C.: Mocap-guided data augmentation for 3D pose estimation in the wild. In: NIPS, pp. 3108–3116 (2016)

    Google Scholar 

  21. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol. 3, pp. 958–962 (2003)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  23. Wallace, B.C., Small, K., Brodley, C.E., Trikalinos, T.A.: Class imbalance, redux. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 754–763. IEEE (2011)

    Google Scholar 

  24. Wang, X., You, M., Shen, C.: Adversarial generation of training examples for vehicle license plate recognition. arXiv preprint arXiv:1707.03124 (2017)

  25. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative adversarial nets with policy gradient. In: National Conference on Artificial Intelligence, pp. 2852–2858 (2016)

    Google Scholar 

  26. Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep network learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 435–442. ACM (2015)

    Google Scholar 

  27. Zhou, Y., Shi, B.E.: Photorealistic facial expression synthesis by the conditional difference adversarial autoencoder. arXiv preprint arXiv:1708.09126 (2017)

  28. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  29. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wan or Zengchang Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Liu, Y., Li, J., Wan, T., Qin, Z. (2018). Emotion Classification with Data Augmentation Using Generative Adversarial Networks. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93040-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics