Denoising Time Series Data Using Asymmetric Generative Adversarial Networks

  • Sunil GandhiEmail author
  • Tim Oates
  • Tinoosh Mohsenin
  • David Hairston
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10939)


Denoising data is a preprocessing step for several time series mining algorithms. This step is especially important if the noise in data originates from diverse sources. Consequently, it is commonly used in biomedical applications that use Electroencephalography (EEG) data. In EEG data noise can occur due to ocular, muscular and cardiac activities. In this paper, we explicitly learn to remove noise from time series data without assuming a prior distribution of noise. We propose an online, fully automated, end-to-end system for denoising time series data. Our model for denoising time series is trained using unpaired training corpora and does not need information about the source of the noise or how it is manifested in the time series. We propose a new architecture called AsymmetricGAN that uses a generative adversarial network for denoising time series data. To analyze our approach, we create a synthetic dataset that is easy to visualize and interpret. We also evaluate and show the effectiveness of our approach on an existing EEG dataset.


  1. 1.
    Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)
  2. 2.
    Daly, I., Nicolaou, N., Nasuto, S.J., Warwick, K.: Automated artifact removal from the electroencephalogram: a comparative study. Clin. EEG Neurosci. 44(4), 291–306 (2013)CrossRefGoogle Scholar
  3. 3.
    Fitzgibbon, S.P., Powers, D.M., Pope, K.J., Clark, C.R.: Removal of EEG noise and artifact using blind source separation. J. Clin. Neurophysiol. 24(3), 232–243 (2007)CrossRefGoogle Scholar
  4. 4.
    Galteri, L., Seidenari, L., Bertini, M., Del Bimbo, A.: Deep generative adversarial compression artifact removal. arXiv preprint arXiv:1704.02518 (2017)
  5. 5.
    Gandhi, S., Oates, T., Boedihardjo, A., Chen, C., Lin, J., Senin, P., Frankenstein, S., Wang, X.: A generative model for time series discretization based on multiple normal distributions. In: Proceedings of the 8th Workshop on Ph.D. Workshop in Information and Knowledge Management, pp. 19–25. ACM (2015)Google Scholar
  6. 6.
    Gao, J., Sultan, H., Hu, J., Tung, W.W.: Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: a comparison. IEEE Sig. Process. Lett. 17(3), 237–240 (2010)CrossRefGoogle Scholar
  7. 7.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  8. 8.
    Jafari, A., Gandhi, S., Konuru, S.H., Hairston, W.D., Oates, T., Mohsenin, T.: An EEG artifact identification embedded system using ICA and multi-instance learning. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017)Google Scholar
  9. 9.
    Lawhern, V., Hairston, W.D., McDowell, K., Westerfield, M., Robbins, K.: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J. Neurosci. Methods 208(2), 181–189 (2012)CrossRefGoogle Scholar
  10. 10.
    Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ocbagabir, H.T., Aboalayon, K.A., Faezipour, M.: Efficient EEG analysis for seizure monitoring in epileptic patients. In: 2013 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–6. IEEE (2013)Google Scholar
  12. 12.
    Seneviratne, U., Mohamed, A., Cook, M., D’Souza, W.: The utility of ambulatory electroencephalography in routine clinical practice: a critical review. Epilepsy Res. 105(1), 1–12 (2013)CrossRefGoogle Scholar
  13. 13.
    Tracey, B.H., Miller, E.L.: Nonlocal means denoising of ECG signals. IEEE Trans. Biomed. Eng. 59(9), 2383–2386 (2012)CrossRefGoogle Scholar
  14. 14.
    Turner, J., Page, A., Mohsenin, T., Oates, T.: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection. In: 2014 AAAI Spring Symposium Series (2014)Google Scholar
  15. 15.
    Urigüen, J.A., Garcia-Zapirain, B.: EEG artifact removal state-of-the-art and guidelines. J. Neural Eng. 12(3), 031001 (2015)CrossRefGoogle Scholar
  16. 16.
    Vaughan, T.M., Heetderks, W., Trejo, L., Rymer, W., Weinrich, M., Moore, M., Kübler, A., Dobkin, B., Birbaumer, N., Donchin, E., et al.: Brain-computer interface technology: a review of the second international meeting (2003)Google Scholar
  17. 17.
    Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. arXiv preprint arXiv:1506.00327 (2015)
  18. 18.
    Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)Google Scholar
  19. 19.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sunil Gandhi
    • 1
    Email author
  • Tim Oates
    • 1
  • Tinoosh Mohsenin
    • 1
  • David Hairston
    • 2
  1. 1.University of Maryland, Baltimore CountyBaltimoreUSA
  2. 2.U.S. Army Research LaboratoryAdelphiUSA

Personalised recommendations