Skip to main content

MIDA: Multiple Imputation Using Denoising Autoencoders

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10939))

Included in the following conference series:


Missing data is a significant problem impacting all domains. State-of-the-art framework for minimizing missing data bias is multiple imputation, for which the choice of an imputation model remains nontrivial. We propose a multiple imputation model based on overcomplete deep denoising autoencoders. Our proposed model is capable of handling different data types, missingness patterns, missingness proportions and distributions. Evaluation on several real life datasets show our proposed model significantly outperforms current state-of-the-art methods under varying conditions while simultaneously improving end of the line analytics.

Ke Wang’s work was supported by a discovery grant from the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Beaulieu-Jones, B.K., Moore, J.H.: The pooled resource open-access ALS, and clinical trials consortium. Missing data imputation in the electronic health record using deeply learned autoencoders. In: Pacific Symposium on Biocomputing, vol. 22, pp. 207. NIH Public Access (2016)

    Google Scholar 

  2. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as generative models. In: Advances in Neural Information Processing Systems, pp. 899–907 (2013)

    Google Scholar 

  3. Buuren, S., Groothuis-Oudshoorn, K.: MICE: multivariate imputation by chained equations in R. J. Stat. Softw. 45(3), 1–68 (2011)

    Article  Google Scholar 

  4. Chen, P.: Optimization algorithms on subspaces: revisiting missing data problem in low-rank matrix. Int. J. Comput. Vis. 80(1), 125–142 (2008)

    Article  Google Scholar 

  5. Duan, Y., Lv, Y., Kang, W., Zhao, Y.: A deep learning based approach for traffic data imputation. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 912–917. IEEE (2014)

    Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  7. Leisch, F., Dimitriadou, E.: Machine learning benchmark problems (2010)

    Google Scholar 

  8. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 811–820. ACM (2015)

    Google Scholar 

  9. Little, R.J.A.: Missing-data adjustments in large surveys. J. Bus. Econ. Stat. 6(3), 287–296 (1988)

    Google Scholar 

  10. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  11. Morris, T.P., White, I.R., Royston, P.: Tuning multiple imputation by predictive mean matching and local residual draws. BMC Med. Res. Methodol. 14(1), 75 (2014)

    Article  Google Scholar 

  12. Nelwamondo, F.V., Mohamed, S., Marwala, T.: Missing data: A comparison of neural network and expectation maximisation techniques. arXiv preprint arXiv:0704.3474 (2007)

  13. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O (1/k2) (1983)

    Google Scholar 

  14. Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976)

    Article  MathSciNet  Google Scholar 

  15. Schafer, J.L.: Multiple imputation: a primer. Stat. Methods Med. Res. 8(1), 3–15 (1999)

    Article  MathSciNet  Google Scholar 

  16. Shah, A.D., Bartlett, J.W., Carpenter, J., Nicholas, O., Hemingway, H.: Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Am. J. Epidemiol. 179(6), 764–774 (2014)

    Article  Google Scholar 

  17. Sterne, J.A.C., White, I.R., Carlin, J.B., Spratt, M., Royston, P., Kenward, M.G., Wood, A.M., Carpenter, J.R.: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, b2393 (2009)

    Article  Google Scholar 

  18. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lovedeep Gondara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gondara, L., Wang, K. (2018). MIDA: Multiple Imputation Using Denoising Autoencoders. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics