Abstract
In this paper, we propose a practically useful means of interpreting the predictions produced by a conformal classifier. The proposed interpretation leads to a classifier with a reject option, that allows the user to limit the number of erroneous predictions made on the test set, without any need to reveal the true labels of the test objects. The method described in this paper works by estimating the cumulative error count on a set of predictions provided by a conformal classifier, ordered by their confidence. Given a test set and a user-specified parameter k, the proposed classification procedure outputs the largest possible amount of predictions containing on average at most k errors, while refusing to make predictions for test objects where it is too uncertain. We conduct an empirical evaluation using benchmark datasets, and show that we are able to provide accurate estimates for the error rate on the test set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Eklund, M., Norinder, U., Boyer, S., Carlsson, L.: The application of conformal prediction to the drug discovery process. Ann. Math. Artif. Intell. 74(1–2), 117–132 (2015)
Lambrou, A., Papadopoulos, H., Kyriacou, E., Pattichis, C.S., Pattichis, M.S., Gammerman, A., Nicolaides, A.: Assessment of stroke risk based on morphological ultrasound image analysis with conformal prediction. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI 2010. IAICT, vol. 339, pp. 146–153. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16239-8_21
Linusson, H., Johansson, U., Boström, H., Löfström, T.: Efficiency comparison of unstable transductive and inductive conformal classifiers. In: Artificial Intelligence Applications and Innovations, pp. 261–270. Springer (2014)
Linusson, H., Johansson, U., Boström, H., Löfström, T.: Reliable confidence predictions using conformal prediction. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31753-3_7
Löfström, T., Boström, H., Linusson, H., Johansson, U.: Bias reduction through conditional conformal prediction. Intell. Data Anal. 9(6) (2015)
Papadopoulos, H.: Inductive conformal prediction: theory and application to neural networks. Tools Artif. Intell. 18(315–330), 2 (2008)
Papadopoulos, H., Gammerman, A., Vovk, V.: Reliable diagnosis of acute abdominal pain with conformal prediction. Eng. Intell. Syst. 17(2), 127 (2009)
Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A.: Inductive confidence machines for regression. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 345–356. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36755-1_29
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Vovk, V.: Conditional validity of inductive conformal predictors. Mach. Learn. 92(2–3), 349–376 (2013)
Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, DE (2006)
Acknowledgements
This work was supported by the Swedish Knowledge Foundation through the project Data Analytics for Research and Development (20150185).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Linusson, H., Johansson, U., Boström, H., Löfström, T. (2018). Classification with Reject Option Using Conformal Prediction. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-93034-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93033-6
Online ISBN: 978-3-319-93034-3
eBook Packages: Computer ScienceComputer Science (R0)