Skip to main content

Classification with Reject Option Using Conformal Prediction

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Included in the following conference series:

Abstract

In this paper, we propose a practically useful means of interpreting the predictions produced by a conformal classifier. The proposed interpretation leads to a classifier with a reject option, that allows the user to limit the number of erroneous predictions made on the test set, without any need to reveal the true labels of the test objects. The method described in this paper works by estimating the cumulative error count on a set of predictions provided by a conformal classifier, ordered by their confidence. Given a test set and a user-specified parameter k, the proposed classification procedure outputs the largest possible amount of predictions containing on average at most k errors, while refusing to make predictions for test objects where it is too uncertain. We conduct an empirical evaluation using benchmark datasets, and show that we are able to provide accurate estimates for the error rate on the test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/donlnz/nonconformist.

References

  1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Eklund, M., Norinder, U., Boyer, S., Carlsson, L.: The application of conformal prediction to the drug discovery process. Ann. Math. Artif. Intell. 74(1–2), 117–132 (2015)

    Article  MathSciNet  Google Scholar 

  4. Lambrou, A., Papadopoulos, H., Kyriacou, E., Pattichis, C.S., Pattichis, M.S., Gammerman, A., Nicolaides, A.: Assessment of stroke risk based on morphological ultrasound image analysis with conformal prediction. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI 2010. IAICT, vol. 339, pp. 146–153. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16239-8_21

    Chapter  Google Scholar 

  5. Linusson, H., Johansson, U., Boström, H., Löfström, T.: Efficiency comparison of unstable transductive and inductive conformal classifiers. In: Artificial Intelligence Applications and Innovations, pp. 261–270. Springer (2014)

    Google Scholar 

  6. Linusson, H., Johansson, U., Boström, H., Löfström, T.: Reliable confidence predictions using conformal prediction. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31753-3_7

    Chapter  Google Scholar 

  7. Löfström, T., Boström, H., Linusson, H., Johansson, U.: Bias reduction through conditional conformal prediction. Intell. Data Anal. 9(6) (2015)

    Article  Google Scholar 

  8. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural networks. Tools Artif. Intell. 18(315–330), 2 (2008)

    Google Scholar 

  9. Papadopoulos, H., Gammerman, A., Vovk, V.: Reliable diagnosis of acute abdominal pain with conformal prediction. Eng. Intell. Syst. 17(2), 127 (2009)

    Google Scholar 

  10. Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A.: Inductive confidence machines for regression. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 345–356. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36755-1_29

    Chapter  Google Scholar 

  11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Vovk, V.: Conditional validity of inductive conformal predictors. Mach. Learn. 92(2–3), 349–376 (2013)

    Article  MathSciNet  Google Scholar 

  13. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, DE (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Knowledge Foundation through the project Data Analytics for Research and Development (20150185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Linusson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Linusson, H., Johansson, U., Boström, H., Löfström, T. (2018). Classification with Reject Option Using Conformal Prediction. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics