Skip to main content

Symbolic Bucket Elimination for Piecewise Continuous Constrained Optimization

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2018)

Abstract

Bucket elimination and its approximation extensions have proved to be effective techniques for discrete optimization. This paper addresses the extension of bucket elimination to continuous constrained optimization by leveraging the recent innovation of the extended algebraic decision diagram (XADD). XADDs support symbolic arithmetic and optimization operations on piecewise linear or univariate quadratic functions that permit the solution of continuous constrained optimization problems with a symbolic form of bucket elimination. The proposed framework is an efficient alternative for solving optimization problems with low tree-width constraint graphs without using a big-M formulation for piecewise, indicator, or conditional constraints. We apply this framework to difficult constrained optimization problems including XOR’s of linear constraints and temporal constraint satisfaction problems with “repulsive” preferences, and show that this new approach significantly outperforms Gurobi. Our framework also enables symbolic parametric optimization where closed-form solutions cannot be computed with tools like Gurobi, where we demonstrate a final novel application to parametric optimization of learned Relu-based deep neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity of exposition, we presume that non-binary discrete variables of cardinality k are encoded in binary with \(\lceil {\log _2(k)}\rceil \) boolean variables.

  2. 2.

    We use \(\varvec{b}_{\setminus i}\) to denote the set \(\varvec{b}\) with the variable \(b_i\) excluded. Similarly \(\varvec{x}_{\setminus i}\) denotes exclusion of \(x_i\) from \(\varvec{x}\).

References

  1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. In: Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1993, pp. 188–191. IEEE Computer Society Press, Los Alamitos (1993). http://dl.acm.org/citation.cfm?id=259794.259826

  2. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press Inc., Orlando (1972)

    MATH  Google Scholar 

  3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997). https://doi.org/10.1145/256303.256306

    Article  MathSciNet  MATH  Google Scholar 

  4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

    Article  MATH  Google Scholar 

  5. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

    Article  MathSciNet  MATH  Google Scholar 

  6. Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction problems. In: Kanal, L., Kumar, V. (eds.) Search in Artificial Intelligence. SYMBOLIC, pp. 370–425. Springer, London (1988). https://doi.org/10.1007/978-1-4613-8788-6_11. http://dl.acm.org/citation.cfm?id=60727.60738

    Chapter  Google Scholar 

  7. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell. 113(1), 41–85 (1999). http://www.sciencedirect.com/science/article/pii/S0004370299000594

    Article  MathSciNet  Google Scholar 

  8. Dechter, R.: Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms. Morgan & Claypool Publishers, San Rafael (2013)

    MATH  Google Scholar 

  9. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991). https://doi.org/10.1016/0004-3702(91)90006-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2016). http://www.gurobi.com

  11. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  12. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal constraint reasoning with preferences. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001, vol. 1, pp. 322–327. Morgan Kaufmann Publishers Inc., San Francisco (2001). http://dl.acm.org/citation.cfm?id=1642090.1642135

  13. Larrosa, J., Dechter, R.: Boosting search with variable elimination in constraint optimization and constraint satisfaction problems. Constraints 8, 303–326 (2003)

    Article  MathSciNet  Google Scholar 

  14. Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination in constraint optimization problems: ‘still-life’ as a case study. J. Artif. Intell. Res. 23, 421–440 (2005)

    MATH  Google Scholar 

  15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010). http://www.icml2010.org/papers/432.pdf

  16. Rollón, E., Larrosa, J.: Bucket elimination for multiobjective optimization problems. J. Heuristics 12(4), 307–328 (2006). https://doi.org/10.1007/s10732-006-6726-y

    Article  MATH  Google Scholar 

  17. Sanner, S., Abbasnejad, E.: Symbolic variable elimination for discrete and continuous graphical models. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2012, pp. 1954–1960. AAAI Press (2012). http://dl.acm.org/citation.cfm?id=2900929.2901004

  18. Sanner, S., Delgado, K., Barros, L.: Symbolic dynamic programming for discrete and continuous state MDPs. In: UAI, pp. 643–652, January 2011

    Google Scholar 

  19. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net learned transition models and mixed-integer linear programming. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 750–756 (2017). https://doi.org/10.24963/ijcai.2017/104

  20. Zamani, Z., Sanner, S., Fang, C.: Symbolic dynamic programming for continuous state and action MDPs. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2012, pp. 1839–1845. AAAI Press (2012). http://dl.acm.org/citation.cfm?id=2900929.2900988

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijiang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Say, B., Sanner, S. (2018). Symbolic Bucket Elimination for Piecewise Continuous Constrained Optimization. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics