Symmetry Breaking Inequalities from the Schreier-Sims Table

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)


We propose a way to derive symmetry breaking inequalities for a mixed-integer programming (MIP) model from the Schreier-Sims table of its formulation group. We then show how to consider only the action of the formulation group onto a subset of the variables. Computational results show that this can lead to considerable speedups on some classes of models.



The author would like to thank Jean-François Puget for an inspiring discussion about the Schreier-Sims table, and three anonymous reviewers for their careful reading and constructive comments.


  1. 1.
    Achterberg, T.: Constraint integer programming. Ph.D thesis. Technische Universität Berlin (2007)Google Scholar
  2. 2.
    Allen, S.D., Burke, E.K., Marecek, J.: A space-indexed formulation of packing boxes into a larger box. Oper. Res. Lett. 40, 20–24 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Butler, G., Cannon, J.J.: Computing in permutation and matrix groups I: normal closure, commutator subgroups, series. Math. Comput. 39, 663–670 (1982)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cameron, P.J.: Permutation Groups. London Mathematical Society St. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  5. 5.
    Danna, E.: Performance variability in mixed integer programming. In: MIP 2008 Workshop in New Work (2008).
  6. 6.
    Gent, I.P., Petrie, K.E., Puget, J.-F.: Symmetry in constraint programming. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 329–376. Elsevier (2006)CrossRefGoogle Scholar
  7. 7.
    IBM: ILOG CPLEX 12.7.1 User’s Manual (2017)Google Scholar
  8. 8.
    Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114, 1–36 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010 - mixed integer programming library version 5. Math. Program. Comput. 3, 103–163 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration, and Search. CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  11. 11.
    Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. 131, 273–304 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94(1), 71–90 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1), 3–21 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming, pp. 647–686. Springer, Heidelberg (2009). Scholar
  15. 15.
    Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126(1), 147–178 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Puget, J.-F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 475–489. Springer, Heidelberg (2005). Scholar
  17. 17.
    Puget, J.-F.: Breaking symmetries in all different problems. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 272–277 (2005)Google Scholar
  18. 18.
    Seress, Á.: Permutation Group Algorithms. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  19. 19.
    Sims, C.C.: Computational methods in the study of permutation groups. In: Computational problems in abstract algebra (Oxford 1967), pp. 169–183. Pergamon Press, Oxford (1970)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information Engineering (DEI)University of PadovaPaduaItaly

Personalised recommendations