Advertisement

The WeightedCircuitsLmax Constraint

  • Kim Rioux-Paradis
  • Claude-Guy Quimper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)

Abstract

The travelling salesman problem is a well-known problem that can be generalized to the m-travelling salesmen problem with min-max objective. In this problem, each city must be visited by exactly one salesman, among m travelling salesmen. We want to minimize the longest circuit travelled by a salesman. This paper generalizes the Circuit and WeightedCircuit constraints and presents a new constraint that encodes m cycles all starting from the same city and whose lengths are bounded by a variable \(L_{max}\). We propose two filtering algorithms, each based on a relaxation of the problem that uses the structure of the graph and the distances between each city. We show that this new constraint improves the solving time for the m travelling salesmen problem.

References

  1. 1.
    Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog, 2nd edn (revision a). Technical report 03, SICS (2012)Google Scholar
  2. 2.
    Held, M., Karp, R.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Laporte, G., Nobert, Y.: A cutting planes algorithm for the m-salesmen problem. J. Oper. Res. Soc. 31, 1017–1023 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    França, P.M., Gendreau, M., Laportt, G., Müller, F.M.: The m-traveling salesman problem with minmax objective. Transp. Sci. 29(3), 267–275 (1995)CrossRefGoogle Scholar
  5. 5.
    Necula, R., Breaban, M., Raschip, M.: Tackling the bi-criteria facet of multiple traveling salesman problem with ant colony systems. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 873–880. IEEE (2015)Google Scholar
  6. 6.
    Narasimha, K.V., Kivelevitch, E., Sharma, B., Kumar, M.: An ant colony optimization technique for solving min–max multi-depot vehicle routing problem. Swarm Evol. Comput. 13, 63–73 (2013)CrossRefGoogle Scholar
  7. 7.
    Somhom, S., Modares, A., Enkawa, T.: Competition-based neural network for the multiple travelling salesmen problem with minmax objective. Comput. Oper. Res. 26(4), 395–407 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ali, A.I., Kennington, J.L.: The asymmetric m-travelling salesmen problem: a duality based branch-and-bound algorithm. Discret. Appl. Math. 13(2–3), 259–276 (1986)zbMATHGoogle Scholar
  9. 9.
    Gromicho, J., Paixão, J., Bronco, I.: Exact solution of multiple traveling salesman problems. In: Akgül, M., Hamacher, H.W., Tüfekçi, S. (eds.) Combinatorial Optimization, pp. 291–292. Springer, Heidelberg (1992).  https://doi.org/10.1007/978-3-642-77489-8_27CrossRefGoogle Scholar
  10. 10.
    Kara, I., Bektas, T.: Integer linear programming formulations of multiple salesman problems and its variations. Eur. J. Oper. Res. 174(3), 1449–1458 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rao, M.R.: A note on the multiple traveling salesmen problem. Oper. Res. 28(3-part-i), 628–632 (1980)Google Scholar
  12. 12.
    Jonker, R., Volgenant, T.: An improved transformation of the symmetric multiple traveling salesman problem. Oper. Res. 36(1), 163–167 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)CrossRefGoogle Scholar
  14. 14.
    Lauriere, J.L.: A language and a program for stating and solving combinatorial problems. Artif. Intell. 10(1), 29–127 (1978)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: Proceedings of the 14th International Conference on Logic Programming (ICLP 1997), pp. 316–330 (1997)Google Scholar
  16. 16.
    Kaya, L.G., Hooker, J.N.: A filter for the circuit constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 706–710. Springer, Heidelberg (2006).  https://doi.org/10.1007/11889205_55CrossRefGoogle Scholar
  17. 17.
    Fages, J., Lorca, X.: Improving the asymmetric TSP by considering graph structure. Technical report 1206.3437, arxiv (2012)Google Scholar
  18. 18.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Comput. Modell. 20(12), 97–123 (1994)CrossRefGoogle Scholar
  19. 19.
    Benchimol, P., Hoeve, W.J.V., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for solving TSP and TSPTW. Ann. Math. Artif. Intell. 34(4), 291–311 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW. INFORMS J. Comput. 14(4), 403–417 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pesant, G., Gendreaul, M., Rousseau, J.-M.: GENIUS-CP: a generic single-vehicle routing algorithm. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 420–434. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0017457CrossRefGoogle Scholar
  23. 23.
    Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM (JACM) 26(4), 690–715 (1979)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7(1), 43–57 (1985)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chin, F., Houck, D.: Algorithms for updating minimal spanning trees. J. Comput. Syst. Sci. 16(3), 333–344 (1978)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range minimum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02927-1_29CrossRefzbMATHGoogle Scholar
  28. 28.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 246–251 (1983)Google Scholar
  29. 29.
    Necula, R., Breaban, M., Raschip, M.: Performance evaluation of ant colony systems for the single-depot multiple traveling salesman problem. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 257–268. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19644-2_22CrossRefGoogle Scholar
  30. 30.
    Fages, J.G., Prud’Homme, C.: Making the first solution good! In: ICTAI 2017 29th IEEE International Conference on Tools with Artificial Intelligence (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université LavalQuébec CityCanada

Personalised recommendations