A Comparison of Optimization Methods for Multi-objective Constrained Bin Packing Problems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)


Despite the existence of efficient solution methods for bin packing problems, in practice these seldom occur in such a pure form but feature instead various considerations such as pairwise conflicts or profits between items, or aiming for balanced loads amongst the bins. The Wedding Seating Problem is a combinatorial optimization problem incorporating elements of bin packing with conflicts, bin packing with profits, and load balancing. We use this representative problem to present and compare constraint programming, integer programming, and metaheuristic approaches.


Pairwise Conflicts Comparing Constraint Programming Efficient Solution Methods Conflict Graph Pareto Set 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support for this research was provided by NSERC Discovery Grant 218028/2017 and CERC, École Polytechnique de Montréal.


  1. 1.
    Lewis, R.: Constructing wedding seating plans: a tabu subject. In: CSREA Press, pp. 24–32 (2013)Google Scholar
  2. 2.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Heidelberg (1998). Scholar
  3. 3.
    Lewis, R., Carroll, F.: Creating seating plans: a practical application. J. Oper. Res. Soc. 67(11), 1353–1362 (2016)CrossRefGoogle Scholar
  4. 4.
    Bellows, M.L., Peterson, J.D.L.: Finding an optimal seating chart for a wedding. Accessed 23 May 2018
  5. 5.
    Schaus, P.: Solving balancing and bin-packing problems with constraint programming. Ph.D thesis, Université catholique de Louvain (2009)Google Scholar
  6. 6.
    Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS J. Comput. 25(2), 244–255 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, Z., Han, X., Dósa, G., Tuza, Z.: Bin packing game with an interest matrix. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 57–69. Springer, Cham (2015). Scholar
  8. 8.
    Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 648–662. Springer, Heidelberg (2004). Scholar
  9. 9.
    Pesant, G.: Achieving domain consistency and counting solutions for dispersion constraints. INFORMS J. Comput. 27(4), 690–703 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gualandi, S., Lombardi, M.: A simple and effective decomposition for the multidimensional binpacking constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 356–364. Springer, Heidelberg (2013). Scholar
  11. 11.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)CrossRefGoogle Scholar
  12. 12.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). Scholar
  13. 13.
    Mitsos, A., Chachuat, B., Barton, P.I.: Mccormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Boland, N., Charkhgard, H., Savelsbergh, M.: A criterion space search algorithm for biobjective integer programming: the balanced box method. INFORMS J. Comput. 27(4), 735–754 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.École Polytechnique de MontréalMontrealCanada
  2. 2.CERCMontrealCanada

Personalised recommendations