Skip to main content

Greedy Randomized Search for Scalable Compilation of Quantum Circuits

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2018)

Abstract

This paper investigates the performances of a greedy randomized algorithm to optimize the realization of nearest-neighbor compliant quantum circuits. Current technological limitations (decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized. One core contribution of this paper is a lexicographic two-key ranking function for quantum gate selection: the first key acts as a global closure metric to minimize the solution makespan; the second one is a local metric acting as “tie-breaker” for avoiding cycling. Our algorithm has been tested on a set of quantum circuit benchmark instances of increasing sizes available from the recent literature. We demonstrate that our heuristic approach outperforms the solutions obtained in previous research against the same benchmark, both from the CPU efficiency and from the solution quality standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is implicitly supposed that at the beginning, the i-th qstate is initialized at the i-th location.

  2. 2.

    Note that in general, a k-qubit gate occupies k chains.

  3. 3.

    The benchmark is available at: https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip.

References

  1. Hart, J., Shogan, A.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107–114 (1987)

    Article  MathSciNet  Google Scholar 

  2. Resende, M.G., Werneck, R.F.: A hybrid heuristic for the p-median problem. J. Heuristics 10(1), 59–88 (2004)

    Article  Google Scholar 

  3. Oddi, A., Smith, S.: Stochastic procedures for generating feasible schedules. In: Proceedings 14th National Conference on AI (AAAI-1997), pp. 308–314 (1997)

    Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  5. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  Google Scholar 

  6. Herrera-Martí, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032332 (2010)

    Article  Google Scholar 

  7. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013)

    Article  Google Scholar 

  8. Brierley, S.: Efficient implementation of quantum circuits with limited qubit interactions. arXiv preprint arXiv:1507.04263, September 2016

  9. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, November 2014

  10. Guerreschi, G.G., Park, J.: Gate scheduling for quantum algorithms. arXiv preprint arXiv:1708.00023, July 2017

  11. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum computing. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6, October 2016

    Google Scholar 

  12. Venturelli, D., Do, M., Rieffel, E., Frank, J.: Temporal planning for compilation of quantum approximate optimization circuits. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-2017, pp. 4440–4446 (2017)

    Google Scholar 

  13. Maslov, D., Falconer, S.M., Mosca, M.: Quantum circuit placement: optimizing qubit-to-qubit interactions through mapping quantum circuits into a physical experiment. In: Proceedings of the 44th Annual Design Automation Conference, DAC 2007, pp. 962–965. ACM, New York (2007)

    Google Scholar 

  14. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning domains. J. Artif. Int. Res. 20(1), 61–124 (2003)

    MATH  Google Scholar 

  15. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    MATH  Google Scholar 

  16. Kole, A., Datta, K., Sengupta, I.: A heuristic for linear nearest neighbor realization of quantum circuits by swap gate insertion using \(n\)-gate lookahead. IEEE J. Emerg. Sel. Top. Circ. Syst. 6(1), 62–72 (2016)

    Article  Google Scholar 

  17. Kole, A., Datta, K., Sengupta, I.: A new heuristic for \(n\) -dimensional nearest neighbor realization of a quantum circuit. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 37(1), 182–192 (2018)

    Article  Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  19. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. AAAI 1998/IAAI 1998, pp. 431–437. American Association for Artificial Intelligence, Menlo Park (1998)

    Google Scholar 

  20. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. In: Proceedings of the 19th International Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, 19–23 September 2009 (2009)

    Google Scholar 

  21. Wah, B.W., Chen, Y.: Subgoal partitioning and global search for solving temporal planning problems in mixed space. Int. J. Artif. Intell. Tools 13(04), 767–790 (2004)

    Article  Google Scholar 

  22. Chen, Y., Wah, B.W., Hsu, C.W.: Temporal planning using subgoal partitioning and resolution in SGPlan. J. Artif. Int. Res. 26(1), 323–369 (2006)

    MATH  Google Scholar 

  23. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs in LPG. J. Artif. Int. Res. 20(1), 239–290 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Oddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oddi, A., Rasconi, R. (2018). Greedy Randomized Search for Scalable Compilation of Quantum Circuits. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics