Advertisement

Solver Independent Rotating Workforce Scheduling

  • Nysret Musliu
  • Andreas Schutt
  • Peter J. Stuckey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)

Abstract

The rotating workforce scheduling problem aims to schedule workers satisfying shift sequence constraints and ensuring enough shifts are covered on each day, where every worker completes the same schedule, just starting at different days in the schedule. We give two solver independent models for the rotating workforce scheduling problem and compare them using different solving technology, both constraint programming and mixed integer programming. We show that the best of these models outperforms the state-of-the-art for the rotating workforce scheduling problem, and that solver independent modeling allows us to use different solvers to achieve different aims: e.g., speed to solution or robustness of solving (particular for unsatisfiable problems). We give the first complete method able to solve all of the standard benchmarks for this problem.

Notes

Acknowledgments

This work was partially supported by the Asian Office of Aerospace Research and Development grant 15-4016 and by the Austrian Science Fund (FWF): P24814-N23.

References

  1. 1.
    Baker, K.R.: Workforce allocation in cyclical scheduling problems: a survey. J. Oper. Res. Soc. 27(1), 155–167 (1976)CrossRefGoogle Scholar
  2. 2.
    Balakrishnan, N., Wong, R.T.: A network model for the rotating workforce scheduling problem. Networks 20(1), 25–42 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belov, G., Stuckey, P.J., Tack, G., Wallace, M.G.: Improved linearization of constraint programming models. In: Rueher, M. (ed.) Principles and Practice of Constraint Programming - CP 2016, pp. 49–65. Springer International Publishing, Cham (2016)Google Scholar
  4. 4.
    Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel scheduling: a literature review. Eur. J. Oper. Res. 226(3), 367–385 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chu, G.: Improving combinatorial optimization. Ph.D. thesis, The University of Melbourne (2011). http://hdl.handle.net/11343/36679
  7. 7.
    Chuin Lau, H.: On the complexity of manpower shift scheduling. Comput. Oper. Res. 23(1), 93–102 (1996)CrossRefGoogle Scholar
  8. 8.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39071-5_12CrossRefGoogle Scholar
  9. 9.
    Côté, M.C., Gendron, B., Quimper, C.G., Rousseau, L.M.: Formal languages for integer programming modeling of shift scheduling problems. Constraints 16(1), 54–76 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Côté, M.-C., Gendron, B., Rousseau, L.-M.: Modeling the regular constraint with integer programming. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 29–43. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72397-4_3CrossRefzbMATHGoogle Scholar
  11. 11.
    Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming models for multiactivity shift scheduling. Manag. Sci. 57(1), 151–163 (2011)CrossRefGoogle Scholar
  12. 12.
    Erkinger, C., Musliu, N.: Personnel scheduling as satisfiability modulo theories. In: International Joint Conference on Artificial Intelligence - IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 614–621 (2017)Google Scholar
  13. 13.
    Falcón, R., Barrena, E., Canca, D., Laporte, G.: Counting and enumerating feasible rotating schedules by means of Gröbner bases. Math. Comput. Simul. 125, 139–151 (2016)CrossRefGoogle Scholar
  14. 14.
    Gärtner, J., Musliu, N., Slany, W.: Rota: a research project on algorithms for workforce scheduling and shift design optimization. AI Commun. 14(2), 83–92 (2001)zbMATHGoogle Scholar
  15. 15.
    Hashemi Doulabi, S.H., Rousseau, L.M., Pesant, G.: A constraint-programming-based branch-and-price-and-cut approach for operating room planning and scheduling. INFORMS J. Comput. 28(3), 432–448 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kadioglu, S., Sellmann, M.: Efficient context-free grammar constraints. In: AAAI, pp. 310–316 (2008)Google Scholar
  17. 17.
    Laporte, G.: The art and science of designing rotating schedules. J. Oper. Res. Soc. 50, 1011–1017 (1999)CrossRefGoogle Scholar
  18. 18.
    Laporte, G., Nobert, Y., Biron, J.: Rotating schedules. Eur. J. Oper. Res. 4(1), 24–30 (1980)CrossRefGoogle Scholar
  19. 19.
    Laporte, G., Pesant, G.: A general multi-shift scheduling system. J. Oper. Res. Soc. 55(11), 1208–1217 (2004)CrossRefGoogle Scholar
  20. 20.
    Musliu, N.: Combination of local search strategies for rotating workforce scheduling problem. In: International Joint Conference on Artificial Intelligence - IJCAI 2005, Edinburgh, Scotland, UK, 30 July - 5 August 2005, pp. 1529–1530 (2005). http://ijcai.org/Proceedings/05/Papers/post-0448.pdf
  21. 21.
    Musliu, N.: Heuristic methods for automatic rotating workforce scheduling. Int. J. Comput. Intell. Res. 2(4), 309–326 (2006)CrossRefGoogle Scholar
  22. 22.
    Musliu, N., Gärtner, J., Slany, W.: Efficient generation of rotating workforce schedules. Discrete Appl. Math. 118(1–2), 85–98 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74970-7_38CrossRefGoogle Scholar
  24. 24.
    Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30201-8_36CrossRefzbMATHGoogle Scholar
  25. 25.
    Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the multi-activity shift scheduling problem. J. Heuristics 16(3), 373–392 (2010)CrossRefGoogle Scholar
  26. 26.
    Restrepo, M.I., Gendron, B., Rousseau, L.M.: Branch-and-price for personalized multiactivity tour scheduling. INFORMS J. Comput. 28(2), 334–350 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift scheduling. In: Milano, M. (ed.) CP 2012. LNCS, pp. 633–646. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33558-7_46CrossRefGoogle Scholar
  28. 28.
    Triska, M., Musliu, N.: A constraint programming application for rotating workforce scheduling. In: Mehrotra, K.G., Mohan, C., Oh, J.C., Varshney, P.K., Ali, M. (eds.) Developing Concepts in Applied Intelligence. SCI, vol. 363, pp. 83–88. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21332-8_12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nysret Musliu
    • 1
  • Andreas Schutt
    • 2
    • 3
  • Peter J. Stuckey
    • 2
    • 3
  1. 1.TU WienViennaAustria
  2. 2.Data61, CSIRODocklandsAustralia
  3. 3.University of MelbourneParkvilleAustralia

Personalised recommendations