Advertisement

An Update on the Comparison of MIP, CP and Hybrid Approaches for Mixed Resource Allocation and Scheduling

  • Philippe Laborie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)

Abstract

We consider a well known resource allocation and scheduling problem for which different approaches like mixed-integer programming (MIP), constraint programming (CP), constraint integer programming (CIP), logic-based Benders decompositions (LBBD) and SAT-modulo theories (SMT) have been proposed and experimentally compared in the last decade. Thanks to the recent improvements in CP Optimizer, a commercial CP solver for solving generic scheduling problems, we show that a standalone tiny CP model can out-perform all previous approaches and close all the 335 instances of the benchmark. The article explains which components of the automatic search of CP Optimizer are responsible for this success. We finally propose an extension of the original benchmark with larger and more challenging instances.

Keywords

Constraint programming Resource allocation Scheduling CP Optimizer 

References

  1. 1.
    Ciré, A., Çoban, E., Hooker, J.N.: Logic-based benders decomposition for planning and scheduling: a computational analysis. Knowl. Eng. Rev. 31(5), 440–451 (2016)CrossRefGoogle Scholar
  2. 2.
    Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time and resources constraints. In: Proceedings of the 2nd International Workshop on Project Management and Scheduling, pp. 115–121 (1990)Google Scholar
  3. 3.
    Heinz, S., Beck, J.C.: Solving resource allocation/scheduling problems with constraint integer programming. In: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS 2011), pp. 23–30 (2011)Google Scholar
  4. 4.
    Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based hybrids for scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 211–227. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29828-8_14CrossRefGoogle Scholar
  5. 5.
    Heinz, S., Ku, W.-Y., Beck, J.C.: Recent improvements using constraint integer programming for resource allocation and scheduling. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 12–27. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38171-3_2CrossRefGoogle Scholar
  6. 6.
    Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30201-8_24CrossRefGoogle Scholar
  7. 7.
    Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Oper. Res. 55(3), 588–602 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to single-mode scheduling problems. In: Baptiste, P., Kendall, G., Munier-Kordon, A., Sourd, F. (eds.) Proceedings of the 3rd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2007), pp. 276–284. Paris, France, 28–31 Aug 2007Google Scholar
  9. 9.
    Laborie, P., Rogerie, J.: Temporal linear relaxation in IBM ILOG CP optimizer. J. Sched. 19(4), 391–400 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling. Constraints J. 23(2), 210–250 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Proceedings of the 21th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2008), pp. 555–560 (2008)Google Scholar
  12. 12.
    Mistry, M., D’Iddio, A.C., Huth, M., Misener, R.: Satisfiability modulo theories for process systems engineering. Optimization Online (2017)Google Scholar
  13. 13.
    Tesch, A.: Compact MIP models for the resource-constrained project scheduling problem. Master’s thesis, Technische Universität Berlin (2015)Google Scholar
  14. 14.
    Vilím, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 230–245. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21311-3_22CrossRefzbMATHGoogle Scholar
  15. 15.
    Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18008-3_30CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IBMGentillyFrance

Personalised recommendations