Observations from Parallelising Three Maximum Common (Connected) Subgraph Algorithms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)


We discuss our experiences adapting three recent algorithms for maximum common (connected) subgraph problems to exploit multi-core parallelism. These algorithms do not easily lend themselves to parallel search, as the search trees are extremely irregular, making balanced work distribution hard, and runtimes are very sensitive to value-ordering heuristic behaviour. Nonetheless, our results show that each algorithm can be parallelised successfully, with the threaded algorithms we create being clearly better than the sequential ones. We then look in more detail at the results, and discuss how speedups should be measured for this kind of algorithm. Because of the difficulty in quantifying an average speedup when so-called anomalous speedups (superlinear and sublinear) are common, we propose a new measure called aggregate speedup.


  1. 1.
    Bader, D.A., Hart, W.E., Phillips, C.A.: Parallel algorithm design for branch and bound. In: Greenberg, H.J. (ed.) Tutorials on Emerging Methodologies and Applications in Operations Research. ISOR, vol. 76, pp. 1–44. Springer, New York (2005). Scholar
  2. 2.
    de Bruin, A., Kindervater, G.A.P., Trienekens, H.W.J.M.: Asynchronous parallel branch and bound and anomalies. In: Ferreira, A., Rolim, J. (eds.) IRREGULAR 1995. LNCS, vol. 980, pp. 363–377. Springer, Heidelberg (1995). Scholar
  3. 3.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)CrossRefGoogle Scholar
  4. 4.
    Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 226–241. Springer, Heidelberg (2009). Scholar
  5. 5.
    Combier, C., Damiand, G., Solnon, C.: Map edit distance vs. graph edit distance for matching images. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 152–161. Springer, Heidelberg (2013). Scholar
  6. 6.
    Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. J. Artif. Intell. Res. 1, 231–255 (1994)Google Scholar
  8. 8.
    Delavallade, T., Fossier, S., Laudy, C., Lortal, G.: On the challenges of using social media for crisis management. In: Rogova, G., Scott, P. (eds.) Fusion Methodologies in Crisis Management, pp. 137–175. Springer, Cham (2016). Scholar
  9. 9.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review. Wiley Interdisc. Rev.: Comput. Mol. Sci. 1(1), 68–79 (2011)Google Scholar
  11. 11.
    Fang, M., Yin, J., Zhu, X., Zhang, C.: Trgraph: cross-network transfer learning via common signature subgraphs. IEEE Trans. Knowl. Data Eng. 27(9), 2536–2549 (2015)CrossRefGoogle Scholar
  12. 12.
    Fernández, M., Valiente, G.: A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recogn. Lett. 22(6/7), 753–758 (2001)CrossRefGoogle Scholar
  13. 13.
    Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). Scholar
  14. 14.
    Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epimorphism problem. Discret. Appl. Math. 162, 214–228 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, 20–25 August 1995, vol. 2, pp. 607–615. Morgan Kaufmann (1995)Google Scholar
  16. 16.
    Hoffmann, R., McCreesh, C., Reilly, C.: Between subgraph isomorphism and maximum common subgraph. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, California, USA, pp. 3907–3914. AAAI Press (2017)Google Scholar
  17. 17.
    Jégou, P.: Decomposition of domains based on the micro-structure of finite constraint-satisfaction problems. In: Fikes, R., Lehnert, W.G. (eds.) Proceedings of the 11th National Conference on Artificial Intelligence, Washington, DC, USA, 11–15 July 1993, pp. 731–736. AAAI Press/The MIT Press (1993)Google Scholar
  18. 18.
    Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algorithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 107–122. Springer, Cham (2016). Scholar
  19. 19.
    Kriege, N.: Comparing graphs. Ph.D. thesis, Technische Universität Dortmund (2015)Google Scholar
  20. 20.
    Lai, T., Sahni, S.: Anomalies in parallel branch-and-bound algorithms. Commun. ACM 27(6), 594–602 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Levi, G.: A note on the derivation of maximal common subgraphs of two directed or undirected graphs. CALCOLO 9(4), 341–352 (1973)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, G., Wah, B.W.: Coping with anomalies in parallel branch-and-bound algorithms. IEEE Trans. Comput. 35(6), 568–573 (1986)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Luo, C., Wang, X., Su, C., Ni, Z.: A fixture design retrieving method based on constrained maximum common subgraph. IEEE Trans. Autom. Sci. Eng. PP(99), 1–13 (2017)Google Scholar
  24. 24.
    Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in constraint programming. J. Artif. Intell. Res. 57, 421–464 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint models for maximum common (connected) subgraph problems. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 350–368. Springer, Cham (2016). Scholar
  26. 26.
    McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algorithm using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 295–312. Springer, Cham (2015). Scholar
  27. 27.
    McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique problem and the implications for parallel branch and bound. TOPC 2(1), 8:1–8:27 (2015)CrossRefGoogle Scholar
  28. 28.
    McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum common subgraph problems. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017 (2017, to appear)Google Scholar
  29. 29.
    Minot, M., Ndiaye, S.N., Solnon, C.: A comparison of decomposition methods for the maximum common subgraph problem. In: 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, 9–11 November 2015, pp. 461–468. IEEE Computer Society (2015)Google Scholar
  30. 30.
    Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 637–644. Springer, Heidelberg (2011). Scholar
  31. 31.
    Park, Y.H., Reeves, D.S., Stamp, M.: Deriving common malware behavior through graph clustering. Comput. Secur. 39, 419–430 (2013)CrossRefGoogle Scholar
  32. 32.
    Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer, Heidelberg (2001). Scholar
  33. 33.
    Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–533 (2002)CrossRefGoogle Scholar
  34. 34.
    Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8), 1067–1079 (2003)CrossRefGoogle Scholar
  35. 35.
    Segundo, P.S., Matía, F., Rodríguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Vismara, P., Valery, B.: Finding maximum common connected subgraphs using clique detection or constraint satisfaction algorithms. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 358–368. Springer, Heidelberg (2008). Scholar
  37. 37.
    Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 11–15 July 2010. AAAI Press (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of St AndrewsSt AndrewsUK
  2. 2.University of GlasgowGlasgowScotland
  3. 3.Université Lyon 1, LIRIS, UMR5205VilleurbanneFrance
  4. 4.INSA-Lyon, LIRIS, UMR5205VilleurbanneFrance

Personalised recommendations