Advertisement

Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately

Releasing Optimal Power Flow Benchmarks Privately
  • Ferdinando Fioretto
  • Pascal Van Hentenryck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)

Abstract

This paper considers the problem of releasing optimal power flow benchmarks that maintain the privacy of customers (loads) using the notion of Differential Privacy. It is motivated by the observation that traditional differential-privacy mechanisms are not accurate enough: The added noise fundamentally changes the nature of the underlying optimization and often leads to test cases with no solution. To remedy this limitation, the paper introduces the framework of Constraint-Based Differential Privacy (CBDP) that leverages the post- processing immunity of differential privacy to improve the accuracy of traditional mechanisms. More precisely, CBDP solves an optimization problem to satisfies the problem-specific constraints by redistributing the noise. The paper shows that CBDP enjoys desirable theoretical properties and produces orders of magnitude improvements on the largest set of test cases available.

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments. This research is partly funded by the ARPA-E Grid Data Program under Grant 1357-1530. The views and conclusions contained in this document are those of the authors only.

References

  1. 1.
    Kaggle: Your home for data science. https://www.kaggle.com
  2. 2.
    Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24178-9_9CrossRefGoogle Scholar
  3. 3.
    Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 901–914. ACM (2013)Google Scholar
  4. 4.
    Backes, M., Berrang, P., Hecksteden, A., Humbert, M., Keller, A., Meyer, T.: Privacy in epigenetics: temporal linkability of MicroRNA expression profiles. In: USENIX Security Symposium, pp. 1223–1240 (2016)Google Scholar
  5. 5.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_14CrossRefGoogle Scholar
  6. 6.
    Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Theor. Comput. Sci. 9(3–4), 211–407 (2013)MathSciNetMATHGoogle Scholar
  7. 7.
    Fanti, G., Pihur, V., Erlingsson, Ú.: Building a rappor with the unknown: privacy-preserving learning of associations and data dictionaries. Proc. Priv. Enhancing Technol. 2016(3), 41–61 (2016)Google Scholar
  8. 8.
    Fioretto, F., Lee, C., Van Hentenryck, P.: Constrained-based differential privacy for private mobility. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2018)Google Scholar
  9. 9.
    Grainger, J.J.S., Grainger, W.D.J.J., Stevenson, W.D.: Power System Analysis. McGraw-Hill Education, New York City (1994)Google Scholar
  10. 10.
    Greenberg, A.: Apple’s ‘differential privacy’ is about collecting your data—but not your data, 13 June 2016. https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/. Accessed 21 Sept 2016
  11. 11.
    Gurobi. Gurobi software. http://www.gurobi.com/
  12. 12.
    Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations of nonlinear programs in power systems. Math. Program. Comput. 32(5), 3549–3558 (2017)MathSciNetMATHGoogle Scholar
  13. 13.
    IBM. ILOG CPLEX software. http://www.ibm.com/
  14. 14.
    Jabr, R.: Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21(3), 1458–1459 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Karapetyan, A., Azman, S.K., Aung, Z.: Assessing the privacy cost in centralized event-based demand response for microgrids. CoRR, abs/1703.02382 (2017)Google Scholar
  16. 16.
    Koufogiannis, F., Han, S., Pappas, G.J.: Optimality of the Laplace mechanism in differential privacy. arXiv preprint arXiv:1504.00065 (2015)
  17. 17.
    Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-feasibility on tree networks is NP-hard. IEEE Trans. Power Syst. 99, 1–4 (2015)Google Scholar
  18. 18.
    Liao, X., Srinivasan, P., Formby, D., Beyah, A.R.: Di-PriDA: differentially private distributed load balancing control for the smart grid. IEEE Trans. Dependable Secure Comput. (2017).  https://doi.org/10.1109/TDSC.2017.2717826
  19. 19.
    McCormick, G.: Computability of global solutions to factorable nonconvex programs: part i - convex underestimating problems. Math. Program. 10, 146–175 (1976)CrossRefGoogle Scholar
  20. 20.
    Mir, D.J., Isaacman, S., Cáceres, R., Martonosi, M., Wright, R.N.: DP-WHERE: differentially private modeling of human mobility. In: 2013 IEEE International Conference on Big Data, pp. 580–588. IEEE (2013)Google Scholar
  21. 21.
    MOSEK ApS. The MOSEK optimization toolbox (2015)Google Scholar
  22. 22.
    Vadhan, S.: The complexity of differential privacy. Tutorials on the Foundations of Cryptography. ISC, pp. 347–450. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57048-8_7CrossRefGoogle Scholar
  23. 23.
    Verma, A.: Power grid security analysis: an optimization approach. Ph.D. thesis, Columbia University (2009)Google Scholar
  24. 24.
    Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control. Wiley, Hoboken (1996)Google Scholar
  25. 25.
    Zhao, J., Jung, T., Wang, Y., Li, X.: Achieving differential privacy of data disclosure in the smart grid. In: INFOCOM, 2014 Proceedings, pp. 504–512. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations