Skip to main content

From Backdoor Key to Backdoor Completability: Improving a Known Measure of Hardness for the Satisfiable CSP

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10848)

Abstract

Many studies have been conducted on the complexity of Constraint Satisfaction Problem (CSP) classes. However, there exists little theoretical work on the hardness of individual CSP instances. In this context, the backdoor key fraction (BKF) [17] was introduced as a quantifier of problem hardness for individual satisfiable instances with regard to backtracking search. In our paper, after highlighting the weaknesses of the BKF, we propose a better characterization of the hardness of an individual satisfiable CSP instance based on the ratio between the size of the solution space and that of the search space. We formally show that our measure is negatively correlated with instance hardness. We also show through experiments that this measure evaluates more accurately the hardness of individual instances than the BKF.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93031-2_14
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-93031-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Achlioptas, D., Gomes, C.P., Kautz, H.A., Selman, B.: Generating satisfiable problem instances. In: Proceedings of AAAI, IAAI, Austin, Texas, USA, 30 July–3 August 2000, pp. 256–261 (2000)

    Google Scholar 

  2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    MathSciNet  CrossRef  Google Scholar 

  3. Dechter, R.: Constraint Processing. Elsevier/Morgan Kaufmann, New York City/Burlington (2003)

    MATH  Google Scholar 

  4. Escamocher, G., O’Sullivan, B.: On the minimal constraint satisfaction problem: complexity and generation. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 731–745. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_54

    CrossRef  MATH  Google Scholar 

  5. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–32 (1982)

    MathSciNet  CrossRef  Google Scholar 

  6. Freuder, E.C.: Complexity of K-tree structured constraint satisfaction problems. In: Proceedings of AAAI, Boston, Massachusetts, 29 July–3 August 1990, vol. 2, pp. 4–9 (1990)

    Google Scholar 

  7. Freuder, E.C.: Completable representations of constraint satisfaction problems. In: Proceedings of KR, Cambridge, MA, USA, 22–25 April 1991, pp. 186–195 (1991)

    Google Scholar 

  8. Ganian, R., Ramanujan, M.S., Szeider, S.: Combining treewidth and backdoors for CSP. In: 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany, 8–11 March 2017, pp. 36:1–36:17 (2017)

    Google Scholar 

  9. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceedings of AAAI, IAAI, Portland, Oregon, 4–8 August 1996, vol. 1, pp. 246–252 (1996)

    Google Scholar 

  10. Gomes, C.P., Fernández, C., Selman, B., Bessière, C.: Statistical regimes across constrainedness regions. Constraints 10(4), 317–337 (2005)

    MathSciNet  CrossRef  Google Scholar 

  11. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the Third International CSP Solver Competition, vol. 3, p. 3 (2008)

    Google Scholar 

  12. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.: Balance and filtering in structured satisfiable problems. In: Proceedings of IJCAI, Seattle, Washington, USA, 4–10 August 2001, pp. 351–358 (2001)

    Google Scholar 

  13. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell. 159(1–2), 1–26 (2004)

    MathSciNet  CrossRef  Google Scholar 

  14. López-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm for bounds consistency of the alldifferent constraint. In: Proceedings of IJCAI, Acapulco, Mexico, 9–15 August 2003, pp. 245–250 (2003)

    Google Scholar 

  15. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic ‘phase transitions’. Nature 400(8), 133–137 (1999)

    MathSciNet  CrossRef  Google Scholar 

  16. Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)

    MathSciNet  CrossRef  Google Scholar 

  17. Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: a path to understanding problem hardness. In: Proceedings of AAAI, IAAI, San Jose, California, USA, 25–29 July 2004, pp. 124–130 (2004)

    Google Scholar 

  18. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theoret. Comput. Sci. 47(3), 85–93 (1986). https://doi.org/10.1016/0304-3975(86)90135-0

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proceedings of IJCAI, Acapulco, Mexico, 9–15 August 2003, pp. 1173–1178 (2003)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Siala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Escamocher, G., Siala, M., O’Sullivan, B. (2018). From Backdoor Key to Backdoor Completability: Improving a Known Measure of Hardness for the Satisfiable CSP. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)