Advertisement

Epiphytic Trees: Relational Consistency Applied to Global Optimization Problems

  • Guilherme Alex Derenievicz
  • Fabiano Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10848)

Abstract

Much effort has been spent to identify classes of CSPs in terms of the relationship between network structure and the amount of consistency that guarantees a backtrack-free solution. In this paper, we address Numerical Constrained global Optimization Problems (NCOPs) encoded as ternary networks, characterizing a class of such problems for which a combination of Generalized Arc-Consistency (GAC) and Relational Arc-Consistency (RAC) is sufficient to ensure a backtrack-free solution, called Epiphytic Trees. While GAC is a domain filtering technique, enforcing RAC creates new constraints in the network. Alternatively, we propose a branch and bound method to achieve a relaxed form of RAC, thus finding an approximation of the solution of NCOPs. We empirically show that Epiphytic Trees are relevant in practice. In addition, we extend this class to cover all ternary NCOPs, for which Strong Directional Relational k-Consistency ensures a backtrack-free solution.

Notes

Acknowledgments

This work was supported by CAPES - Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil.

References

  1. 1.
    Araya, I., Reyes, V.: Interval branch-and-bound algorithms for optimization and constraint satisfaction: a survey and prospects. J. Glob. Optim. 65(4), 837–866 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper bounding in inner regions for global optimization under inequality constraints. J. Glob. Optim. 60(2), 145–164 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    van Beek, P., Dechter, R.: Constraint tightness and looseness versus local and global consistency. J. ACM 44(4), 549–566 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Benhamou, F., Granvilliers, L.: Continuos and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, pp. 569–601. Elsevier, New York (2006)zbMATHGoogle Scholar
  5. 5.
    Benhamou, F., McAllester, D., van Hentenryck, P.: CLP (intervals) revisited. In: International Symposium on Logic Programming, pp. 124–138. MIT Press, Cambridge (1994)Google Scholar
  6. 6.
    Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and Boolean constraints. J. Logic Program. 32(1), 1–24 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Berge, C.: Graphs and Hypergraphs. Elsevier Science, Oxford (1985)zbMATHGoogle Scholar
  8. 8.
    Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary constraints. Artif. Intell. 172(6), 800–822 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bhurjee, A.K., Panda, G.: Efficient solution of interval optimization problem. Math. Methods Oper. Res. 76(3), 273–288 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chabert, G., Trombettoni, G., Neveu, B.: New light on arc consistency over continuous domains. Technical report RR-5365, INRIA (2004)Google Scholar
  11. 11.
    Cohen, D.A., Jeavons, P.G.: The power of propagation: when GAC is enough. Constraints 22(1), 3–23 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34(3), 922–938 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Davis, E.: Constraint propagation with interval labels. Artif. Intell. 32(3), 281–331 (1987)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)zbMATHGoogle Scholar
  15. 15.
    Dechter, R., van Beek, P.: Local and global relational consistency. Theoret. Comput. Sci. 173(1), 283–308 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif. Intell. 34(1), 1–38 (1987)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dechter, R., Rish, I.: Directional resolution: the Davis-Putnam procedure, revisited. In: 4th International Conference on Principles of Knowledge Representation and Reasoning, pp. 134–145. Morgan Kaufmann, San Francisco (1994)CrossRefGoogle Scholar
  18. 18.
    Faltings, B.: Arc-consistency for continuous variables. Artif. Intell. 65(2), 363–376 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Faltings, B., Gelle, E.M.: Local consistency for ternary numeric constraints. In: 15th International Joint Conference on Artificial Intelligence, pp. 392–397. Morgan Kaufmann, San Francisco (1997)Google Scholar
  20. 20.
    Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21(11), 958–966 (1978)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–32 (1982)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gyssens, M.: On the complexity of join dependencies. ACM Trans. Database Syst. 11(1), 81–108 (1986)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (2004)zbMATHGoogle Scholar
  25. 25.
    van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jégou, P.: On the consistency of general constraint-satisfaction problems. In: 11th National Conference on Artificial Intelligence, pp. 114–119. AAAI Press, Washington, D.C. (1993)Google Scholar
  27. 27.
    Karakashian, S., Woodward, R.J., Reeson, C., Choueiry, B.Y., Bessiere, C.: A first practical algorithm for high levels of relational consistency. In: 24th AAAI Conference on Artificial Intelligence, pp. 101–107. AAAI Press, California (2010)Google Scholar
  28. 28.
    Kearfott, R.B.: An interval branch and bound algorithm for bound constrained optimization problems. J. Glob. Optim. 2(3), 259–280 (1992)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lebbah, Y., Michel, C., Rueher, M.: An efficient and safe framework for solving optimization problems. J. Comput. Appl. Math. 199(2), 372–377 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lhomme, O.: Consistency techniques for numeric CSPS. In: 13th International Joint Conference on Artificial Intelligence, pp. 232–238. Morgan Kaufmann, San Francisco (1993)Google Scholar
  31. 31.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Mackworth, A.K.: On reading sketch maps. In: 5th International Joint Conference on Artificial Intelligence, pp. 598–606. Morgan Kaufmann, San Francisco (1977)Google Scholar
  33. 33.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefGoogle Scholar
  34. 34.
    Moore, R.E.: Interval Analysis. Prentice-Hall, New Jersey (1966)zbMATHGoogle Scholar
  35. 35.
    Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  36. 36.
    Neumaier, A., Shcherbina, O., Huyer, W., Vinkó, T.: A comparison of complete global optimization solvers. Math. Program. 103(2), 335–356 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR 13(3), 247–277 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Halsted Press, New York (1988)zbMATHGoogle Scholar
  39. 39.
    Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. Constraints 1(1), 85–118 (1996)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39901-8_16CrossRefzbMATHGoogle Scholar
  41. 41.
    Sidebottom, G., Havens, W.S.: Hierarchical arc consistency for disjoint real intervals in constraint logic programming. Comput. Intell. 8(4), 601–623 (1992)CrossRefGoogle Scholar
  42. 42.
    Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearizations for global optimization. In: 25th AAAI Conference on Artificial Intelligence, pp. 99–104. AAAI Press, California (2011)Google Scholar
  43. 43.
    Van Hentenryck, P.: Numerica: a modeling language for global optimization. In: 15th International Joint Conference on Artificial Intelligence, pp. 1642–1647. Morgan Kaufmann, San Francisco (1997)Google Scholar
  44. 44.
    Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.H. (ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill, New York (1975)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal University of ParanáCuritibaBrazil

Personalised recommendations