Stone Agers in the Fast Lane? How Bioarchaeologists Can Address the Paleo Diet Myth

  • Hallie R. BuckleyEmail author
  • Jane E. Buikstra
Part of the Bioarchaeology and Social Theory book series (BST)


Paleo diets have been characterized as having foods that we “were born to eat,” and the justification for their healthful nature is based upon the assumption that they reflect the foods our Stone Age ancestors ate: low in sugar and cereals and high in meat and “healthy fats.” Here we critique this assumption by drawing on direct evidence of hominin diet from the bioarchaeological record (isotope and microfossil data) that shows that there was no such ubiquitous Stone Age diet. These data also demonstrate that plant foods, including cereals, were consumed by our ancestors many millennia before the Paleo diet proponents would have us believe and well before the agricultural revolution. We also probe our Eurocentric views of the genetic basis of metabolic syndrome-related diseases by reviewing the burden of these diseases, the possible skeletal evidence for this, from Oceania. This Oceanic case study underscores the diversity of our species, its histories, its ecologies, its genetics, and its diets. These differences extend over tens of thousands of years and demonstrate that there simply was not and is no signature one-size-fits-all diet from humankind’s past that is universally healthful.


Paleo diet Microfossils Metabolic syndrome Paleopathology Agricultural revolution 


  1. Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120, 1640–1645.CrossRefGoogle Scholar
  2. Armelagos, G., Brown, P., & Turner, B. (2004). Evolutionary, historical and political economic perspectives on health and disease. Social Science Medicine, 61, 755–765.CrossRefGoogle Scholar
  3. Aufderheide, A., & Rodríguez-Martín, C. (1998). The Cambridge encyclopedia of human paleopathology. Cambridge: Cambridge University Press.Google Scholar
  4. Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D’Udine, B., Foley, R. A., et al. (2004). Developmental plasticity and human health. Nature, 430, 419–421.CrossRefGoogle Scholar
  5. Bateman, M., Hapuarachchi, K., Clinton, P., & Doyle, A. (2018). Diffuse idiopathic skeletal hyperostosis (DISH): Increased prevalence in Pacific islanders. Journal of Medical Imaging and Radiation Oncology, 62, 188–193.CrossRefGoogle Scholar
  6. Buckley, H. (2007). Possible gouty arthritis in Lapita-associated skeletons from Teouma, Efate Island, Central Vanuatu. Current Anthropology, 48(5), 741–749.CrossRefGoogle Scholar
  7. Buckley, H. (2011). Epidemiology of gout: Perspectives from the past. Current Rheumatology Reviews, 7(2), 106–113.CrossRefGoogle Scholar
  8. Buckley, H., Kinaston, R., Halcrow, S., Foster, A., Spriggs, M., & Bedford, S. (2014). Scurvy in a tropical paradise? Evaluating the possibility of infant and adult vitamin C deficiency in the Lapita skeletal sample of Teouma, Vanuatu, Pacific islands. International Journal of Paleopathology, 5, 72–85.CrossRefGoogle Scholar
  9. Buckley, H., Tayles, N., Halcrow, S., Robb, K., & Fyfe, R. (2010). The people of Wairau bar: A re-examination. Journal of Pacific Archaeology, 1(1), 1–20.Google Scholar
  10. Buckley, H., Tayles, N., Spriggs, M., & Bedford, S. (2008). A preliminary report on health and disease in early Lapita skeletons, Vanuatu: Possible biological costs of island colonisation. Journal of Island and Coastal Archaeology, 3, 87–114.CrossRefGoogle Scholar
  11. Chang, S., Ko, Y., Wang, T., Chang, F., Cinkotai, F., & Chen, C. (1997). High prevalence of gout and related risk factors in Taiwan’s aborigines. The Journal of Rheumatology, 24(7), 1364–1369.Google Scholar
  12. Cheng, L., Chiang, S., Tu, H., Chan, S., Wang, T., Ko, A., et al. (2004). Genomwide scan or gout in Taiwanese aborigines reveals linkage to chromosome 4q25. American Journal of Human Genetics, 75, 498–503.CrossRefGoogle Scholar
  13. Choi, K., & Driwantoro, D. (2007). Shell tool use by early members of Homo erectus in Sangiran, central Java, Indonesia: Cut mark evidence. Journal of Archaeological Science, 34(1), 48–58.CrossRefGoogle Scholar
  14. Coaccioli, S., Fatati, G., Di Cato, L., Marioli, D., Patucchi, E., Pizzuti, C., et al. (2000). Diffuse idiopathic skeletal hyperostosis in diabetes mellitus, impaired glucose tolerance and obesity. Panminerva Medica, 42(4), 247–251.Google Scholar
  15. Cockram, C. (2000). The epidemiology of diabetes mellitus in the Asia-Pacific region. Hong Kong Medical Journal, 6(1), 43–52.Google Scholar
  16. Conkey, M. W., & Spector, J. D. (1984). Archaeology and the study of gender. Advances in Archaeological Methods and Theory, 7, 1–38.Google Scholar
  17. Corbett, S., McMichael, A., & Prentice, A. (2009). Type 2 Diabetes, cardiovascular disease and the evolutionary paradox of the Polycystic Over Syndrome: A Fertiity First Hypothesis. American Journal of Human Biology, 21, 587–598.CrossRefGoogle Scholar
  18. Dao, H. H., Harun-Or-Rashid, M. D., & Sakamoto, J. (2010). Body composition and metabolic syndrome in patients with primary gout in Vietnam. Rheumatology, 49, 2400–2407.CrossRefGoogle Scholar
  19. Darmawan, J., Valkenburg, H., Muirden, K., & Wigley, R. (1992). Epidemiology of rheumatic diseases in rural and urban populations in Indonesia: A World Health Organisation international league against rheumatism COPCORD study, stage I, phase 2. Annals of the Rheumatic Diseases, 51, 525–528.CrossRefGoogle Scholar
  20. Doherty, M. (2009). New insights into the epidemiology of gout. Rheumatology, 48, ii2–ii8.CrossRefGoogle Scholar
  21. Douglas, M., Pietrusewsky, M., & Ikehara-Quebral, R. (1997). Skeletal biology of Apurguan: A precontact Chamorro site on Guam. American Journal of Physical Anthropology, 104(3), 291–314.CrossRefGoogle Scholar
  22. Duff, R. (1977). The moa-hunter period of Maori culture. Wellington: Government Printer.Google Scholar
  23. Eaton, S., Konner, M., & M, S. (1988). Stone agers in the fast lane: Chronic degenerative diseases in evolutionary perspective. American Journal of Medicine, 84, 739–749.CrossRefGoogle Scholar
  24. Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. (2005). The metabolic syndrome. Lancet, 365, 1415–1428.CrossRefGoogle Scholar
  25. Englberger, L., Marks, G., & Fitzgerald, M. (2002). Insights on food and nutrition in the Federated States of Micronesia: A review of the literature. Public Health Nutrition, 6(1), 5–17.Google Scholar
  26. Fornaciari, G., Giuffra, V., Giusiani, S., Fornaciari, A., Villari, N., & Vitiello, A. (2009). The ‘gout’ of the Medici, Grand Dukes of Florence: A palaeopathological study. Rheumatology, 48, 375–377.CrossRefGoogle Scholar
  27. Foster, A., Kinaston, R., Spriggs, M., Bedford, S., Gray, A., & Buckley, H. (2018). Possible diffuse idiopathic skeletal hyperostosis (DISH) in a 3000-year-old Pacific Island skeletal assemblage. Journal of Archaeological Science: Reports, 18, 408–419.CrossRefGoogle Scholar
  28. Foster, A., R. Kinaston, M. Spriggs, S. Bedford, A. Gray and H. Buckley (2018). “Possible diffuse idiopathic skeletal hyperostosis (DISH) in a 3000-year-old Pacific Island skeletal assemblage.” Journal of Archaeological Science: Reports18: 408–419.Google Scholar
  29. Fraile, J. M., Puig, J. G., Torres, R. J., de Miguel, E., Martinez, P., & Vazquez, J. J. (2010). Uric acid metabolism in patients with primary gout and the metabolic syndrome. Nucleosides, Nucleotides and Nucleic Acids, 29, 330–334.CrossRefGoogle Scholar
  30. Frassetto, L., Schlotter, M., Mietus-Snyder, M., Morris, R., & Sebastien, A. (2009). Metabolic and physiological improvements from consuming a paleolithic, hunter-gatherer type of diet. European Journal of Clinical Nutrition, 2009, 1–9.Google Scholar
  31. Gero, J. M., & Conkey, M. W. (Eds.). (1991). Engendering archaeology: Women and prehistory. Blackwell Publishers, Ltd.: Oxford.Google Scholar
  32. Gibson, T., Waterworth, R., Hatfield, P., Robinson, G., & Bremner, K. (1984). Hyperuricaemia, gout and kidney function in New Zealand Maori men. British Journal of Rheumatology, 23, 276–282.CrossRefGoogle Scholar
  33. Gosling, A., Buckley, H., Matisoo-Smith, E., & Merriman, T. (2015). Pacific populations, metabolic disease and ‘just-so stories’: A critique of the ‘Thrifty Genotype’ hypothesis in Oceania. Annals of Human Genetics, 79(6), 470–480. Scholar
  34. Gosling, A., Matisoo-Smith, E., & Merriman, T. (2014). Gout in Maori: Modern affliction or ancestral trait? Rheumatology, 53, 773–774.CrossRefGoogle Scholar
  35. Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin, B. A., et al. (2005). Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 112(17), 2735–2752.CrossRefGoogle Scholar
  36. Hardy, K., Buckley, S., Collins, M., Almudena Estalrrich, A., Brothwell, D., Copeland, L., et al. (2012). Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften, 99, 617–626.CrossRefGoogle Scholar
  37. Hardy, K., Radini, A., Buckley, S. S., Copeland, R. L., Gopher, A., & Barkai, R. (2016). Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quaternary International, 398, 129–135.CrossRefGoogle Scholar
  38. Hart, D., & Sussman, R. W. (2005). Man the hunted: Primates, predators, and human evolution. New York: Basic Books.Google Scholar
  39. Henry, A., Brooks, A., & Piperno, D. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Science, 108(2), 486–491.CrossRefGoogle Scholar
  40. Henry, A., Brooks, A., & Piperno, D. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution, 69, 44–66.CrossRefGoogle Scholar
  41. Henry, A., & Piperno, D. R. (2008). Using plant microfossils from dental calculus to recover human diet: A case study from Tell al-Raqa, Syria. Journal of Archaeological Science, 35, 1943–1950.CrossRefGoogle Scholar
  42. Higham, T., Anderson, A., & Jacomb, C. (1999). Dating the first New Zealanders: The chronology of Wairau Bar. Antiquity, 73, 420–427.CrossRefGoogle Scholar
  43. Hockett, B. (2012). The consequences of Middle Paleolithic diets on pregnant Neanderthal women. Quaternary International, 264, 78–82.CrossRefGoogle Scholar
  44. Hockett, B., & Haws, J. (2005). Nutritional ecology and the human demography of Neandertal extinction. Quaternary International, 137, 21–34.CrossRefGoogle Scholar
  45. Hollis-Moffat, J., Xu, X., Dalbeth, N., Merriman, M., Topless, R., Waddell, C., et al. (2009). Role of urate transporter SLC2A9 gene in susceptibility to Gout in New Zealand Maori, Pacific Island and Caucasian case-control sample sets. Arthritis and Rheumatism, 60(11), 3485–3492.CrossRefGoogle Scholar
  46. Houghton, P. (1980). The first New Zealanders. Auckland: Hodder and Stoughton.Google Scholar
  47. Houghton, P. (1996). People of the great ocean; aspects of human biology of the early pacific. Hong Kong: Cambridge University Press.CrossRefGoogle Scholar
  48. Hughes, R., & Marks, G. (2009). Against the tide of change: Diet and health in the Pacific islands. Journal of the American Dietetic Association, 109(10), 1700–1703.CrossRefGoogle Scholar
  49. Jankauskas, R. (2003). The incidence of Diffuse Idiopathic Skeletal Hyperostosis and social status correlations in Lithuanian skeletal materials. International Journal of Osteoarchaeology, 13, 289–293.CrossRefGoogle Scholar
  50. Joordens, J., Wesselingh, F., de Vos, J., Vonhof, H., & Kroon, D. (2009). Relevance of aquatic environments for hominins: A case study from Trinil (Java, Indonesia). Journal of Human Evolution, 57(6), 656–671.CrossRefGoogle Scholar
  51. Kaur, J. (2014). A comprehensive review on metabolic syndrome. Cardiology Research and Practice, 2014, 1–21.Google Scholar
  52. Kinaston, R., Buckley, H., Halcrow, S., Spriggs, M., Bedford, S., & Gray, A. (2009). Investigating foetal and perinatal mortality and morbidity in prehistoric skeletal samples. Journal of Archaeological Science, 36, 2780–2787.CrossRefGoogle Scholar
  53. Kinaston, R., Buckley, H., Valentin, F., Bedford, S., Spriggs, M., Hawkins, S., et al. (2014). Lapita diet in Remote Oceania: New stabel isotope evidence from the 3000-year-old Teouma site, Efate island, Vanuatu. PLoS One, 9(3), e90376.CrossRefGoogle Scholar
  54. Kirch, P. (1997). The Lapita peoples: Ancestors of the oceanic world. Cambridge: Blackwell.Google Scholar
  55. Kirch, P. (2000). On the road of the winds: An archaeological history of the Pacific Islands before European contact. Berkeley: University of California Press.Google Scholar
  56. Kirch, P. V. (1984). The evolution of polynesian chiefdoms. Cambridge: Cambridge University Press.Google Scholar
  57. Klemp, P., Stansfield, S., Castle, B., & Robertson, M. C. (1997). Gout is on the increase in New Zealand. Annals of the Rheumatic Diseases, 56, 22–26.CrossRefGoogle Scholar
  58. Klonoff, D. (2009). The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. Journal of Diabetes Science and Technology, 3(6), 1229–1232.CrossRefGoogle Scholar
  59. Knapp, M., Horsburgh, K. A., Prost, S., Stanton, J., Buckley, H., Walter, R. K., et al. (2012). Complete mitochondrial DNA genome sequences from the first New Zealanders. Proceedings of the National Academy of Sciences of the United States of America, 109(45), 18350–18354.CrossRefGoogle Scholar
  60. Kuo, C., Grainge, M., Zhang, W., & Doherty, M. (2015). Global epidemiology of gout: Prevalence, incidence and risk factors. Nature Reviews Rheumatology, 11, 649–662.CrossRefGoogle Scholar
  61. Kylin, E. (1923). On clinical determination of capillary tension. Journal of Internal Medicine, 57(1), 566–586.Google Scholar
  62. Lindeberg, S., Jönsson, T., Granfeldt, Y., Borgstrand, E., Soffman, J., Sjöström, K., et al. (2007). A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia, 50, 1795–1807.CrossRefGoogle Scholar
  63. Lanaspa, M., Sautin, Y., Ahsan Ejaz, A., Madero, M., MyPhuong Le, M., Manitius, J., et al. (2011). Uric acid and metabolic syndrome: What is the relationship? Current Rheumatology Reviews, 7(2), 162–169.CrossRefGoogle Scholar
  64. Lee, R. B., & DeVore I. (Eds.). (1968). Man the hunter. Chicago: Aldine.Google Scholar
  65. Li, C., Hsieh, M.-C., & Chang, S.-J. (2013). Metabolic syndrome, diabetes, and hyperuricemia. Current Opinion in Rheumatology, 25(2), 210–216.CrossRefGoogle Scholar
  66. Littlejohn, G. O., & Hall, S. (1982). Diffuse idiopathic skeletal hyperostosis and new bone formation in male gouty subjects. Rheumatology International, 2, 83–86.CrossRefGoogle Scholar
  67. Littlejohn, G. O., & Smythe, H. A. (1981). Marker hyperinsulinemia after glucose challenge in patients with diffuse idiopathic skeletal hyperostosis. Rheumatology, 8(6), 965–968.Google Scholar
  68. Lovell, N. (2000). Paleopathological description and diagnosis. In S. Saunders (Ed.), Biological anthropology of the human skeleton (pp. 217–248). New York: Wiley-Liss.Google Scholar
  69. Madert, R., & Lavi, I. (2009). Diabetes mellitus and hypertension as risk factors for early diffuse idiopathic skeletal hyperostosis (DISH). Osteoarthritis and Cartilage, 17(6), 825–828.CrossRefGoogle Scholar
  70. Manheimer, E., van Zuuren, W., Fedorowicz, Z., & Pijl, H. (2015). Paleolithic nutrition for metabolic syndrome: Systematic review and meta-analysis. American Journal of Clinical Nutrition, 102, 922–932.CrossRefGoogle Scholar
  71. Minaur, N., Sawyers, S., Parker, J., & Darmawan, J. (2004). Rheumatic disease in an Australian Aboriginal community in North Queensland, Australia. A WHO-ILAR COPCORD survey. Journal of Rheumatology, 31, 965–972.Google Scholar
  72. Neel, J. (1962). Diabetes mellitus: A ‘thrifty’ genotype rendered detrimental by ‘progress’? American Journal of Human Genetics, 14, 353–362.Google Scholar
  73. O’Keefe, J., & Cordain, L. (2004). Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: How to become a 21st-century huntergatherer. Mayo Clinical Proceedings, 79, 101–108.CrossRefGoogle Scholar
  74. Ogle, G. (2001). Type 2 diabetes mellitus in Papua New Guinea—An historical perspective. PNG Medical Journal, 44(3), 81–87.Google Scholar
  75. Ortner, D. (Ed.). (2003). Identification of pathological conditions in human skeletal remains. San Diego, CA: Academic Press.Google Scholar
  76. Oxenham, M. F., Matsumura, H., & Nishimoto, T. (2006). Diffuse idiopathic skeletal hyperostosis in Late Jomon Hokkaido, Japan. International Journal of Osteoarchaeology, 16(1), 34.CrossRefGoogle Scholar
  77. Panapasa, S., McNally, J., Heeringa, S., & Williams, D. (2015). Impacts of long-term obesity on the health status of Samoan and Tongan men in the United States: Results from the Pacific islander health study. Ethnicity and Disease, 25(3), 279–286.CrossRefGoogle Scholar
  78. Petchey, F., Spriggs, M., Bedford, S., Valentin, F., & Buckley, H. (2014). Radiocarbon dating of burials from the Teouma Lapita cemetery, Efate, Vanuatu. Journal of Archaeological Science, 50, 227–242.CrossRefGoogle Scholar
  79. Pietrusewsky, M., & Douglas, M. T. (2002). Ban Chiang: A prehistoric village site in Northeast Thailand. I: The human skeletal remains. Philadelphia, PA: The University of Pennsylvania.Google Scholar
  80. Pollock, N. (1986). Food classification in three Pacific societies: Fiji, Hawaii, and Tahiti. Ethnology, 25(2), 107–117.CrossRefGoogle Scholar
  81. Pollock, N. (1992). These Roots Remain: Food habits in islands of the central and eastern Pacific since western contact. Honolulu: The Institute for Polynesian Studies.Google Scholar
  82. Poor, G., & Mituszova, M. (2003). History, classification and epidemiology of crystal-related arthropathies. In M. Weisman (Ed.), Rheumatology (Vol. 2, pp. 1893–1902). Edinburgh: Mosby.Google Scholar
  83. Prentice, A., Hennig, B., & Fulford, A. (2008). Evolutionary origins of the obesity epidemic: Natural selection of thrifty genes or genetic drfit following predation release? International Journal of Obesity, 32, 1607–1610.CrossRefGoogle Scholar
  84. Puig, J. G., & Martinez, M. A. (2008). Hyperuricemia, gout and the metabolic syndrome. Current Opinion in Rheumatology, 20, 187–191.CrossRefGoogle Scholar
  85. Prior, I. (1981). Epidemiology of rheumatic disorders in the Pacific with particular emphasis on hyperuricaemia and gout. Seminars in Arthritis and Rheumatism, 11(1), 213–229.CrossRefGoogle Scholar
  86. Reale, B., Marchi, D., Silvana, M., & Borgonini, T. (1999). A case of diffuse idiopathic skeletal hyperostosis (DISH) from a medieval necropolis in southern Italy. International Journal of Osteoarchaeology, 9, 369–373.CrossRefGoogle Scholar
  87. Resnick, D. (Ed.). (1995). Diagnosis of bone and joint disorders. Philadelphia: W.B. Saunders.Google Scholar
  88. Resnick, D., & Niwayama, G. (1995). Gouty arthritis. In D. Resnick (Ed.), Diagnosis of bone and joint disorders (Vol. 3, pp. 1511–1555). Philadelphia: W.B. Saunders.Google Scholar
  89. Richards, M., Hedges, R., Jacobi, R., Current, A., & Stringer, C. (2000a). FOCUS: Gough’s Cave and Sun Hole Cave human stable isotope values indicate a high animal protein diet in the British Upper Palaeolithic. Journal of Archaeological Science, 27(1), 1–3.CrossRefGoogle Scholar
  90. Richards, M., Pettitt, P., Trinkaus, E., Smith, F., Paunovic, M., & Karavanic, I. (2000b). Neanderthal diet at Vindija and Neanderthal predation: The evidence from stable isotopes. Procedings of the National Academy of Science of the United States of America, 97(13), 7663–7666.CrossRefGoogle Scholar
  91. Richards, M., Pettitt, P., Stiner, M., & Trinkaus, E. (2001). Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proceedings of the National Academy of Science of the United States of America, 98(11), 6528–6532.CrossRefGoogle Scholar
  92. Richards, M., Shutling, R., & Hedges, R. (2003). Archaeology: Sharp shift in diet at onset of Neolithic. Nature, 425, 366.CrossRefGoogle Scholar
  93. Richards, M., & Trinkaus, E. (2009). Isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Science, 106(38), 16034–16039.CrossRefGoogle Scholar
  94. Richards, M. P., & Hedges, R. E. M. (1999). Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic Coast of Europe. Journal of Archaeological Science, 26, 717–722.CrossRefGoogle Scholar
  95. Richards, M. P., Jacobi, R., Cook, J., Pettitt, P. B., & Stringer, C. B. (2005). Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans. Journal of Human Evolution, 49, 390–394.CrossRefGoogle Scholar
  96. Richards, M. P., Taylor, G., Steele, T., McPherron, S. P., Soressi, M., Jaubert, J., et al. (2008). Isotopic dietary analysis of a Neanderthal and associated fauna from the site of Jonzac (Charente-Maritime), France. Journal of Human Evolution, 55(1), 179–185.CrossRefGoogle Scholar
  97. Roberts, C., & Cox, M. (2003). Health and disease in Britain from prehistory to the present day. Thrupp: Sutton Publishing Limited.Google Scholar
  98. Rogers, J. (2000). The palaeopathology of joint disease. In M. Cox & S. Mays (Eds.), Human osteology in archaeology and forensic science (pp. 163–182). London: Greenwich Medical Media.Google Scholar
  99. Rogers, J., & Waldron, T. (1995). A field guide to joint disease in archaeology. Chichester: Wiley.Google Scholar
  100. Rogers, J., & Waldron, T. (2001). DISH and the monastic way of life. International Journal of Osteoarchaeology, 11, 357–365.CrossRefGoogle Scholar
  101. Rogers, J., Waldron, T., Dieppe, P., & Watt, I. (1987). Arthropathies in palaeopathology: The basis of classification according to most probable cause. Journal of Archaeological Science, 14, 179–193.CrossRefGoogle Scholar
  102. Rogers, J., Watt, I., & Waldron, T. (1981). Arthritis in Saxon mediaeval skeletons. British Medical Journal, 283, 1668–1670.CrossRefGoogle Scholar
  103. Rose, B., & Prior, I. (1963). A survey of rheumatism in a rural New Zealand Maori community. Annals of the Rheumatic Diseases, 22(6), 410–415.CrossRefGoogle Scholar
  104. Rothschild, B., & Heathcote, G. (1995). Characterization of Gout in a skeletal population sample: Presumptive diagnosis in a Micronesian population. American Journal of Physical Anthropology, 98(4), 519–525.CrossRefGoogle Scholar
  105. Ryberg, M., Sandberg, S., Mellberg, C., Stegle, O., Lindahl, B., Hauksson, J., et al. (2013). A Palaeolithic-type diet causes strong tissue-specific effects on ectopic fat deposition in obese postmenopausal women. Journal of Internal Medicine, 274(1), 67–76.CrossRefGoogle Scholar
  106. Semah, A.-M., Semah, F., Djubiantono, T., & Brasseur, B. (2010). Landscapes and Hominids’ environments: Changes between the Lower and the Early Middle Pleistocene in Java (Indonesia). Quaternary International, 223–224, 451–454.CrossRefGoogle Scholar
  107. Sencan, H., Nacitarhan, V., Sencan, M., & Kaptanoglu, E. (2005). The prevalence of diffuse idiopathic skeletal hyperostosis in patients with diabetes mellitus. Rheumatology International, 25(7), 518–521.CrossRefGoogle Scholar
  108. Silman, A., & Hochberg, M. (2001). Epidemiology of rheumatic diseases. Oxford: Oxford University Press.Google Scholar
  109. Simmonds, H., McBride, M., Hatfield, P., Graham, R., McCaskey, J., & Jackson, M. (1994). Polynesian women are also at risk for hyperuricaemia and gout because of genetic defect in renal urate handling. British Journal of Rheumatology, 33, 932–937.CrossRefGoogle Scholar
  110. Simmons, D., & Thompson, C. (2004). Prevalence of the metabolic syndrome among adult New Zealanders of Polynesian and European descent. Diabetes Care, 27(12), 3002–3004.CrossRefGoogle Scholar
  111. Skoglund, P., Posth, C., Sirak, K., Spriggs, M., Valentin, F., Bedford, S., et al. (2016). Genomic insights into the peopling of the Southwest Pacific. Nature, 538, 510–513.CrossRefGoogle Scholar
  112. Spriggs, M. (1997). The island Melanesians: The peoples of South-East Asia and the Pacific. Cornwall: Blackwell.Google Scholar
  113. Tanner, C., Boocock, J., Stahl, E., Dobbyn, A., Mandal, A., Cadzow, M., et al. (2017). Population-specific resequencing associates the ATP-binding cassette subfamily C member 4 gene with gout in New Zealand Maori and Pacific Men. Arthritis and Rheumatology, 69(7), 1461–1469.CrossRefGoogle Scholar
  114. Tromp, M., Dudgeon, J., Buckley, H., & Matisoo-Smith, E. (2016). Dental calculus and plant diet in Oceania. In M. Oxenham & H. Buckley (Eds.), The Routledge handbook of bioarchaeology in Southeast Asia and the Pacific Islands (pp. 599–622). London and New York: Routledge, Taylor and Francis.Google Scholar
  115. Turner, B., & Thompson, A. (2014). Beyond the Paleolithic prescription: Incorporating diversity and flexibility in the study of human evolution. Nutrition Reviews, 71(8), 501–510.CrossRefGoogle Scholar
  116. Waldron, T. (1994). Counting the dead: The epidemiology of skeletal populations. Surrey: Wiley.Google Scholar
  117. Waldron, T. (2007). Palaeoepidemiology: The measure of disease in the human past. Walnut Creek, CA: Left Coast Press, Inc.Google Scholar
  118. Walter, R., Smith, I., & Jacomb, C. (2006). Sedentism, subsistence and socio-political organization in prehistoric New Zealand. World Archaeology, 38(2), 274–290.CrossRefGoogle Scholar
  119. Warinner, C., Rodrigues, J. F., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., et al. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 46(4), 336–344.CrossRefGoogle Scholar
  120. Warinner, C., Speller, C., & Collins, M. (2015). A new era in palaeomicrobiology: Prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370, 20130376.CrossRefGoogle Scholar
  121. Wei, C.-Y., Sun, C. C., Wei, J. C., Tai, H. C., Sun, C. A., & Chung, C. F. (2015). Association between hyperuricemia and metabolic syndrome: An epidemiological study of a labor force population in Taiwan. BioMed Research International, 2015, 1–7.Google Scholar
  122. Whincup, P., Kaye, S., Owen, C., Huxley, R., Cook, D., Anazawa, S., et al. (2009). Birthweight and risk of Type 2 diabetes: A quantitative systematic review of published evidence. JAMA, 300, 2886–2897.Google Scholar
  123. Wilson, P. W. F., D’Agostino, R. B., Parise, H., Sullivan, L., & Meigs, J. B. (2005). Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation, 112, 3066–3072.CrossRefGoogle Scholar
  124. WHO. (2000). Obesity: Preventing and managing the global epidemic. Geneva: WHO.Google Scholar
  125. Winnard, D., Wright, C., Taylor, W., Jackson, G., Te Karu, L., Gow, P., et al. (2012). National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology, 51, 901–909.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnatomyUniversity of OtagoOtagoNew Zealand
  2. 2.School of Human Evolution and Social Change, Arizona State UniversityTempeUSA

Personalised recommendations