Structure of Accretion Discs in Lensed QSOs

Part of the Astrophysics and Space Science Library book series (ASSL, volume 454)


As early as in 1937, Zwicky wrote about gravitational lenses acting as ‘space telescopes’, allowing the observation of faint and distant objects, the fluxes from which may be considerably enhanced due to the lensing. It is clear today that gravitational lensing may be helpful in performing another important task, one of the main purposes of telescopic observations, namely, increasing spatial resolution. The images of strongly lensed QSOs are affected by microlensing effects in the halo of the lensing galaxy. In contrast to the classical strong lensing, these effects are sensitive to the size and form of an object. The purpose of this chapter is to give a general introduction to quasar microlensing and to illustrate the capabilities of the method, with a review of the latest results in this field, concentrating especially on the results obtained in our three recent papers.


  1. Abolmasov P (2014) The thickness of a weakly magnetized accretion flow inside the last stable orbit of a Kerr black hole. Mon Not R Astron Soc 445:1269–1287., 1408.6449
  2. Abolmasov P (2017) Apparent quasar disc sizes in the “bird’s nest” paradigm. Astron Astrophys 600:A79., 1701.08957
  3. Abolmasov P, Chashkina A (2015) On the Eddington limit for relativistic accretion discs. Mon Not R Astron Soc 454:3432–3444., 1509.07261
  4. Abolmasov P, Poutanen J (2017) Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars. Mon Not R Astron Soc 464:152–169., 1609.03350
  5. Abolmasov P, Shakura NI (2012a) Microlensing evidence for super-Eddington disc accretion in quasars. Mon Not R Astron Soc 427:1867–1876., 1208.1678
  6. Abolmasov P, Shakura NI (2012b) Resolving the inner structure of QSO discs through fold-caustic-crossing events. Mon Not R Astron Soc 423:676–693., 1203.2656
  7. Abolmasov P, Shakura NI (2013) Erratum: microlensing evidence for super-Eddington disc accretion in quasars. Mon Not R Astron Soc 434:906–908. ADSCrossRefGoogle Scholar
  8. Agol E, Krolik JH (2000) Magnetic stress at the marginally stable orbit: altered disk structure, radiation, and black hole spin evolution. Astrophys J 528:161–170., arXiv:astro-ph/9908049
  9. Arnold VI, Wassermann GS, Thomas RK (2003) Catastrophe theory. Springer, Berlin/HeidelbergGoogle Scholar
  10. Bardeen JM, Petterson JA (1975) The lense-thirring effect and accretion disks around Kerr black holes. Astrophys J 195:L65+.
  11. Bardeen JM, Press WH, Teukolsky SA (1972) Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys J 178:347–370. ADSCrossRefGoogle Scholar
  12. Bastian N, Covey KR, Meyer MR (2010) A Universal stellar initial mass function? A critical look at variations. Annu Rev Astron Astrophys 48:339–389., 1001.2965
  13. Bate NF, Floyd DJE, Webster RL, Wyithe JSB (2008) A microlensing study of the accretion disc in the quasar MG 0414+0534. Mon Not R Astron Soc 391:1955–1960., 0810.1092
  14. Berezhiani Z, Ciarcelluti P, Comelli D, Villante FL (2005) Structure formation with mirror dark matter. Int J Mod Phys D 14:107–119., arXiv:astro-ph/0312605
  15. Blackburne JA, Pooley D, Rappaport S, Schechter PL (2011) Sizes and temperature profiles of quasar accretion disks from chromatic microlensing. Astrophys J 729:34., 1007.1665
  16. Blaes O, Krolik JH, Hirose S, Shabaltas N (2011) Dissipation and vertical energy transport in radiation-dominated accretion disks. Astrophys J 733:110., 1103.5052
  17. Blandford R, Narayan R (1986) Fermat’s principle, caustics, and the classification of gravitational lens images. Astrophys J 310:568–582. ADSCrossRefGoogle Scholar
  18. Bogdanov MB, Cherepashchuk AM (2004) Analysis of a high-amplitude event in component A of the gravitational lens QSO 2237 + 0305. Astron Rep 48:261–266. ADSCrossRefGoogle Scholar
  19. Braibant L, Hutsemékers D, Sluse D, Anguita T, García-Vergara CJ (2014) Microlensing of the broad-line region in the quadruply imaged quasar HE0435–1223. Astron Astrophys 565:L11., 1405.5014
  20. Braibant L, Hutsemékers D, Sluse D, Anguita T (2016) The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross. Astron Astrophys 592:A23., 1606.01734
  21. Cao X (2009) An accretion disc-corona model for X-ray spectra of active galactic nuclei. Mon Not R Astron Soc 394:207–213., 0812.1828
  22. Cassinelli JP, Hartmann L (1977) The effect of winds and coronae of hot stars on the infrared and radio continua. Astrophys J 212:488–493. ADSCrossRefGoogle Scholar
  23. Chang K, Refsdal S (1979) Flux variations of QSO 0957+561 A, B and image splitting by stars near the light path. Nature 282:561–564. ADSCrossRefGoogle Scholar
  24. Chang K, Refsdal S (1984) Star disturbances in gravitational lens galaxies. Astron Astrophys 132:168–178ADSGoogle Scholar
  25. Chwolson O (1924) Über eine mögliche Form fiktiver Doppelsterne. Astron Nachr 221:329ADSCrossRefGoogle Scholar
  26. Collier S, Peterson BM (2001) Characteristic ultraviolet/optical timescales in active galactic nuclei. Astrophys J 555:775–785. ADSCrossRefGoogle Scholar
  27. Collin S, Boisson C, Mouchet M, Dumont A, Coupé S, Porquet D, Rokaki E (2002) Are quasars accreting at super-Eddington rates? Astron Astrophys 388:771–786., arXiv:astro-ph/0203439
  28. Dexter J, Agol E (2009) A fast new public code for computing photon orbits in a Kerr spacetime. Astrophys J 696:1616–1629., 0903.0620
  29. Doroshenko VT, Sergeev SG, Klimanov SA, Pronik VI, Efimov YS (2012) Broad-line region kinematics and black hole mass in Markarian 6. Mon Not R Astron Soc 426:416–426., 1203.2084
  30. Eddington AS (1925) A limiting case in the theory of radiative equilibrium. Mon Not R Astron Soc 85:408ADSCrossRefGoogle Scholar
  31. Eigenbrod A, Courbin F, Sluse D, Meylan G, Agol E (2008) Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 = the Einstein cross. I. Spectrophotometric monitoring with the VLT. Astron Astrophys 480:647–661., 0709.2828
  32. Einstein A (1936) Lens-like action of a star by the deviation of light in the gravitational field. Science 84:506–507. ADSCrossRefGoogle Scholar
  33. Elitzur M (2008) The toroidal obscuration of active galactic nuclei. New A Rev 52:274–288., 0805.3699
  34. Ferreras I, Saha P, Williams LLR (2005) Stellar and total mass in early-type lensing galaxies. Astrophys J 623:L5–L8., arXiv:astro-ph/0503168
  35. Floyd DJE, Bate NF, Webster RL (2009) The accretion disc in the quasar SDSS J0924+0219. Mon Not R Astron Soc 398:233–239., 0905.2651
  36. Gaudi BS, Petters AO (2002) Gravitational microlensing near caustics. I. Folds. Astrophys J 574:970–984., arXiv:astro-ph/0112531
  37. Gil-Merino R, González-Cadelo J, Goicoechea LJ, Shalyapin VN, Lewis GF (2006) Is there a caustic crossing in the lensed quasar Q2237+0305 observational data record? Mon Not R Astron Soc 371:1478–1482., arXiv:astro-ph/0607162
  38. Grier CJ, Peterson BM, Horne K, Bentz MC, Pogge RW, Denney KD, De Rosa G, Martini P, Kochanek CS, Zu Y, Shappee B, Siverd R, Beatty TG, Sergeev SG, Kaspi S, Araya Salvo C, Bird JC, Bord DJ, Borman GA, Che X, Chen C, Cohen SA, Dietrich M, Doroshenko VT, Efimov YS, Free N, Ginsburg I, Henderson CB, King AL, Mogren K, Molina M, Mosquera AM, Nazarov SV, Okhmat DN, Pejcha O, Rafter S, Shields JC, Skowron J, Szczygiel DM, Valluri M, van Saders JL (2013) The structure of the broad-line region in active galactic nuclei. I. Reconstructed velocity-delay maps. Astrophys J 764:47., 1210.2397
  39. Guerras E, Mediavilla E, Jimenez-Vicente J, Kochanek CS, Muñoz JA, Falco E, Motta V (2013a) Microlensing of quasar broad emission lines: constraints on broad line region size. Astrophys J 764:160., 1207.2042
  40. Guerras E, Mediavilla E, Jimenez-Vicente J, Kochanek CS, Muñoz JA, Falco E, Motta V, Rojas K (2013b) Microlensing of quasar ultraviolet iron emission. Astrophys J 778:123., 1309.2603
  41. Hamadache C, Le Guillou L, Tisserand P, Afonso C, Albert JN, Andersen J, Ansari R, Aubourg É, Bareyre P, Beaulieu JP, Charlot X, Coutures C, Ferlet R, Fouqué P, Glicenstein JF, Goldman B, Gould A, Graff D, Gros M, Haissinski J, de Kat J, Lesquoy É, Loup C, Magneville C, Marquette JB, Maurice É, Maury A, Milsztajn A, Moniez M, Palanque-Delabrouille N, Perdereau O, Rahal YR, Rich J, Spiro M, Vidal-Madjar A, Vigroux L, Zylberajch S (2006) Galactic bulge microlensing optical depth from EROS-2. Astron Astrophys 454:185–199., arXiv:astro-ph/0601510
  42. Hilbert S, White SDM, Hartlap J, Schneider P (2007) Strong lensing optical depths in a ΛCDM universe. Mon Not R Astron Soc 382:121–132., arXiv:astro-ph/0703803
  43. Hogg DW (1999) Distance measures in cosmology. ArXiv Astrophysics. e-prints 9905116. arXiv:astro-ph/9905116 Google Scholar
  44. Hubeny I, Hubeny V (1998) Non-LTE models and theoretical spectra of accretion disks in active galactic nuclei. II. Vertical structure of the disk. Astrophys J 505:558–576., arXiv:astro-ph/9804288
  45. Inada N, Oguri M, Morokuma T, Doi M, Yasuda N, Becker RH, Richards GT, Kochanek CS, Kayo I, Konishi K, Utsunomiya H, Shin MS, Strauss MA, Sheldon ES, York DG, Hennawi JF, Schneider DP, Dai X, Fukugita M (2006) SDSS J1029+2623: a gravitationally lensed quasar with an image separation of 22.5”. Astrophys J 653:L97–L100., arXiv:astro-ph/0611275
  46. Irwin MJ, Webster RL, Hewett PC, Corrigan RT, Jedrzejewski RI (1989) Photometric variations in the Q2237 + 0305 system - first detection of a microlensing event. Astron J 98:1989–1994. ADSCrossRefGoogle Scholar
  47. Ivanov PB, Illarionov AF (1997) The oscillatory shape of the stationary twisted disc around a Kerr black hole. Mon Not R Astron Soc 285:394–402ADSCrossRefGoogle Scholar
  48. Ivezić Ž, Menou K, Knapp GR, Strauss MA, Lupton RH, Vanden Berk DE, Richards GT, Tremonti C, Weinstein MA, Anderson S, Bahcall NA, Becker RH, Bernardi M, Blanton M, Eisenstein D, Fan X, Finkbeiner D, Finlator K, Frieman J, Gunn JE, Hall PB, Kim RSJ, Kinkhabwala A, Narayanan VK, Rockosi CM, Schlegel D, Schneider DP, Strateva I, SubbaRao M, Thakar AR, Voges W, White RL, Yanny B, Brinkmann J, Doi M, Fukugita M, Hennessy GS, Munn JA, Nichol RC, York DG (2002) Optical and radio properties of extragalactic sources observed by the FIRST survey and the Sloan digital sky survey. Astron J 124:2364–2400., astro-ph/0202408
  49. Jaroszynski M, Wambsganss J, Paczynski B (1992) Microlensed light curves for thin accretion disks around Schwarzschild and Kerr black holes. Astrophys J 396:L65–L68. ADSCrossRefGoogle Scholar
  50. Keeton CR (2001) A catalog of mass models for gravitational lensing. ArXiv Astrophysics. e-prints arXiv:astro-ph/0102341 Google Scholar
  51. Kochanek CS (2006) Part 2: Strong gravitational lensing. In: Meylan G, Jetzer P, North P, Schneider P, Kochanek CS, Wambsganss J (eds) Saas-Fee advanced course 33: gravitational lensing: strong, weak and micro. Springer, Berlin, pp 91–268CrossRefGoogle Scholar
  52. Kochanek CS, Keeton CR (1997) Gravitational lensing limits on early-type galaxies. In: Arnaboldi M, Da Costa GS, Saha P (eds) The nature of elliptical galaxies, 2nd Stromlo symposium. Astronomical society of the pacific conference series, vol 116, p 21. arXiv:astro-ph/9611217 Google Scholar
  53. Kochanek CS, Schechter PL (2004) The hubble constant from gravitational lens time delays. Measuring and modeling the universe. Cambridge University Press, Cambridge, p 117. astro-ph/0306040 Google Scholar
  54. Kochanek CS, Keeton CR, McLeod BA (2001) The importance of Einstein rings. Astrophys J 547:50–59., arXiv:astro-ph/0006116
  55. Kofman L, Kaiser N, Lee MH, Babul A (1997) Statistics of gravitational microlensing magnification. I. Two-dimensional lens distribution. Astrophys J 489:508–+., arXiv:astro-ph/9608138
  56. Kollatschny W, Zetzl M (2013) Vertical broad-line region structure in nearby active galactic nuclei. Astron Astrophys 558:A26., 1308.1902
  57. Kolykhalov PI, Sunyaev RA (1984) Radiation of accretion disks in quasars and galactic nuclei. Adv Space Res 3:249–254
  58. Korista K (1999) What’s emitting the broad emission lines? In: Ferland G, Baldwin J (eds) Quasars and cosmology. Astronomical society of the pacific conference series, vol 162. Astronomical Society of the Pacific, San Francisco, p 165, astro-ph/9812043 Google Scholar
  59. Kormann R, Schneider P, Bartelmann M (1994) Isothermal elliptical gravitational lens models. Astron Astrophys 284:285–299ADSGoogle Scholar
  60. Lawrence A (2012) The UV peak in active galactic nuclei: a false continuum from blurred reflection? Mon Not R Astron Soc 423:451–463., 1110.0854
  61. Meyer F, Liu BF, Meyer-Hofmeister E (2000) Evaporation: the change from accretion via a thin disk to a coronal flow. Astron Astrophys 361:175–188. astro-ph/0007091 Google Scholar
  62. Mihalas D (1978) Stellar atmospheres, 2nd edn. W.H. Freeman and Co., San FranciscoGoogle Scholar
  63. Morgan CW, Kochanek CS, Morgan ND, Falco EE (2010) The Quasar accretion disk size-black hole mass relation. Astrophys J 712:1129–1136., 1002.4160
  64. Morgan CW, Hainline LJ, Chen B, Tewes M, Kochanek CS, Dai X, Kozlowski S, Blackburne JA, Mosquera AM, Chartas G, Courbin F, Meylan G (2012) Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158–4325. Astrophys J 756:52., 1205.4727
  65. Mortonson MJ, Schechter PL, Wambsganss J (2005) Size is everything: universal features of quasar microlensing with extended sources. Astrophys J 628:594–603., arXiv:astro-ph/0408195
  66. Muñoz JA, Falco EE, Kochanek CS, Lehár J, McLeod BA, Impey CD, Rix H, Peng CY (1998) The castles project. Astrophys Space Sci 263:51–54., arXiv:astro-ph/9902131
  67. Narayan R, Yi I (1995) Advection-dominated accretion: underfed black holes and neutron stars. Astrophys J 452:710–+., arXiv:astro-ph/9411059
  68. Novikov ID, Thorne KS (1973) Astrophysics of black holes. In: Black holes (Les Astres Occlus). Gordon&Breach, Paris, pp 343–450Google Scholar
  69. O’Dowd MJ, Bate NF, Webster RL, Labrie K, Rogers J (2015) Microlensing constraints on broad absorption and emission line flows in the quasar H1413+117. Astrophys J 813:62., 1504.07160
  70. Paczynski B (1986) Gravitational microlensing at large optical depth. Astrophys J 301:503–516. ADSCrossRefGoogle Scholar
  71. Page DN, Thorne KS (1974) Disk-Accretion onto a black hole. Time-averaged structure of accretion disk. Astrophys J 191:499–506. ADSCrossRefGoogle Scholar
  72. Peterson BM (2006) The broad-line region in active galactic nuclei. In: Alloin D (ed) Physics of active galactic nuclei at all scales. Lecture notes in physics, vol 693. Springer, Berlin, p 77.
  73. Pietrini P, Krolik JH (1995) The inverse Compton thermostat in hot plasmas near accreting black holes. Astrophys J 447:526., astro-ph/9501093
  74. Pooley D, Blackburne JA, Rappaport S, Schechter PL (2007) X-ray and optical flux ratio anomalies in quadruply lensed quasars. I. Zooming in on quasar emission regions. Astrophys J 661:19–29., arXiv:astro-ph/0607655
  75. Poutanen J, Lipunova G, Fabrika S, Butkevich AG, Abolmasov P (2007) Supercritically accreting stellar mass black holes as ultraluminous X-ray sources. Mon Not R Astron Soc 377:1187–1194., astro-ph/0609274
  76. Raychaudhury S, Saslaw WC (1996) The observed distribution function of peculiar velocities of galaxies. Astrophys J 461:514–+., arXiv:astro-ph/9602001
  77. Riffert H, Herold H (1995) Relativistic accretion disk structure revisited. Astrophys J 450:508–+.
  78. Rybicki GB, Lightman AP (1986) Radiative processes in astrophysics. Wiley, WeinheimGoogle Scholar
  79. Sadowski A (2011) Slim accretion disks around black holes. ArXiv e-prints 1108.0396 Google Scholar
  80. Sadowski A, Narayan R, Tchekhovskoy A, Abarca D, Zhu Y, McKinney JC (2014) Global simulations of axisymmetric radiative black hole accretion disks in general relativity with a sub-grid magnetic dynamo. ArXiv e-prints 1407.4421 Google Scholar
  81. Schneider P (2005) Weak gravitational lensing. astro-ph/0509252 astro-ph/0509252 Google Scholar
  82. Schneider P (2006) Part 1: Introduction to gravitational lensing and cosmology. In: Meylan G, Jetzer P, North P, Schneider P, Kochanek CS, Wambsganss J (eds) Saas-Fee advanced course 33: gravitational lensing: strong, weak and micro. Springer, Berlin, pp 1–89Google Scholar
  83. Shakura NI (1972) Disk model of gas accretion on a relativistic star in a close binary system. Astron Rep 49:921Google Scholar
  84. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355ADSGoogle Scholar
  85. Shalyapin VN, Goicoechea LJ, Alcalde D, Mediavilla E, Muñoz JA, Gil-Merino R (2002) The nature and size of the optical continuum source in QSO 2237+0305. Astrophys J 579:127–135., arXiv:astro-ph/0207236
  86. Siuniaev RA, Shakura NI (1977) Disk reservoirs in binary systems and prospects for observing them. Pis’ma Astron Zh 3:262–266ADSGoogle Scholar
  87. Takeuchi S, Ohsuga K, Mineshige S (2013) Clumpy outflows from supercritical accretion flow. Publ Astron Soc Jpn 65:88., 1305.1023
  88. Udalski A, Szymanski MK, Kubiak M, Pietrzynski G, Soszynski I, Zebrun K, Szewczyk O, Wyrzykowski L, Ulaczyk K, Wiêckowski T (2006) The optical gravitational lensing experiment. OGLE-III long term monitoring of the gravitational lens QSO 2237+0305. Acta Astron 56:293–305, arXiv:astro-ph/0701300 Google Scholar
  89. Vakulik V, Schild R, Dudinov V, Nuritdinov S, Tsvetkova V, Burkhonov O, Akhunov T (2006) Observational determination of the time delays in gravitational lens system <ASTROBJ>Q2237+0305</ASTROBJ>. Astron Astrophys 447:905–913., astro-ph/0509545
  90. Vernardos G, Fluke CJ (2014) The effect of macromodel uncertainties on microlensing modelling of lensed quasars. Mon Not R Astron Soc 445:1223–1234., 1409.1640
  91. Vestergaard M, Peterson BM (2006) Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys J 641:689–709., arXiv:astro-ph/0601303
  92. Walsh D, Carswell RF, Weymann RJ (1979) 0957 + 561 A, B - Twin quasistellar objects or gravitational lens. Nature 279:381–384. ADSCrossRefGoogle Scholar
  93. Wambsganss J (2006) Part 4: Gravitational microlensing. In: G Meylan, P Jetzer, P North, P Schneider, C S Kochanek, & J Wambsganss (ed) Saas-Fee advanced course 33: gravitational lensing: strong, weak and micro. Springer, Heidelberg, pp 453–540Google Scholar
  94. Webb W, Malkan M (2000) Rapid optical variability in active galactic nuclei and quasars. Astrophys J 540:652–677. ADSCrossRefGoogle Scholar
  95. Witt HJ, Kayser R, Refsdal S (1993) Microlensing predictions for the Einstein cross 2237+0305. Astron Astrophys 268:501–510ADSGoogle Scholar
  96. Woźniak PR, Alard C, Udalski A, Szymański M, Kubiak M, Pietrzyński G, Zebruń K (2000) The optical gravitational lensing experiment monitoring of QSO 2237+0305. Astrophys J 529:88–92., arXiv:astro-ph/9904329
  97. Yan CS, Lu Y, Yu Q, Mao S, Wambsganss J (2014) Microlensing of sub-parsec massive binary black holes in lensed QSOs: light curves and size-wavelength relation. Astrophys J 784:100., 1402.2504
  98. Zakharov AF (1997) Gravitational lenses and microlenses (in Russian). Yanus-K, MoscowGoogle Scholar
  99. Zakharov AF, Sazhin MV (1998) Reviews of topical problems: gravitational microlensing. Phys Usp 41:945–982. ADSCrossRefGoogle Scholar
  100. Zeldovich IB, Novikov ID (1975) Structure and evolution of the universe. Izdatel’stvo Nauka, Moscow (in Russian), 736 pGoogle Scholar
  101. Zhuravlev VV, Ivanov PB (2011) A fully relativistic twisted disc around a slowly rotating Kerr black hole: derivation of dynamical equations and the shape of stationary configurations. Mon Not R Astron Soc 415:2122–2144., 1103.5739

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  2. 2.Tuorla ObservatoryUniversity of TurkuPiikkioFinland
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations