Relativistic Twisted Accretion Disc

Part of the Astrophysics and Space Science Library book series (ASSL, volume 454)


A twisted disc forms around a rotating black hole each time when the disc outskirts are not aligned with the black hole’s equatorial plane. We derive equations describing the evolution of the shape of twisted discs and perturbations of density and velocity necessarily arising in such a disc. This is done under the following simplifying assumptions: a small aspect ratio of the disc, a slow rotation of the black hole, and a small tilt angle of the disc rings with respect to the black hole equatorial plane. Nevertheless, the GR effects are considered accurately. Additionally, an analysis of particular regimes of non-stationary twist dynamics (the wave and diffusion regimes) is presented both in the framework of the Newtonian dynamics and taking into account Einstein’s relativistic precession. At the end of the chapter, a calculation of the shape of a stationary relativistic twisted accretion disc for different values of free parameters of the model is done.


  1. Bardeen JM, Petterson JA (1975) Astrophys J 195:65ADSCrossRefGoogle Scholar
  2. Bardeen JM, Press WH, Teukolsky SA (1972) Astrophys J 178:347ADSCrossRefGoogle Scholar
  3. Cadez A, Calvani M (2005) Mon Not R Astron Soc 363:177ADSCrossRefGoogle Scholar
  4. Cadez A, Brajnik M, Gomboc A, Calvani M, Fanton C (2003) Astron Astrophys 403:29ADSCrossRefGoogle Scholar
  5. Caproni A, Mosquera Cuesta HJ, Abraham Z (2004) Astrophys J 616:L99ADSCrossRefGoogle Scholar
  6. Caproni A, Abraham Z, Livio M, Mosquera Cuesta HJ (2007) Mon Not R Astron Soc 379:135ADSCrossRefGoogle Scholar
  7. Demianski M, Ivanov PB (1997) Astron Astrophys 324:829ADSGoogle Scholar
  8. Dexter J, C FP (2013) Mon Not R Astron Soc 432:2252Google Scholar
  9. Hatchett SP, Begelman MC, Sarazin CL (1981) Astrophys J 247:677ADSCrossRefGoogle Scholar
  10. Herrnstein JR, Greenhill LJ, Moran JM (1996) Astrophys J Lett 468:17ADSCrossRefGoogle Scholar
  11. Ipser GR (1996) Astrophys J 458:508ADSCrossRefGoogle Scholar
  12. Ivanov PB, Illarionov AF (1997) Mon Not R Astron Soc 285:394ADSCrossRefGoogle Scholar
  13. Kato S (1990) Publ Astron Soc Jpn 42:99ADSGoogle Scholar
  14. Kumar S, Pringle JE (1985) Mon Not R Astron Soc 213:435ADSCrossRefGoogle Scholar
  15. Landau LD, Lifshitz EM (1971) The classical theory of fields. Pergamon Press, Oxford (Paragraph 6, Problem 1)Google Scholar
  16. Lodato G, Pringle JE (2007) Mon Not R Astron Soc 381:1287ADSCrossRefGoogle Scholar
  17. Martin RG (2008) Mon Not R Astron Soc 387:830ADSCrossRefGoogle Scholar
  18. Martin RG, Reis RC, Pringle JE (2008a) Mon Not R Astron Soc Lett 391:L15ADSGoogle Scholar
  19. Martin RG, Tout CA, Pringle JE (2008b) Mon Not R Astron Soc 387:188ADSCrossRefGoogle Scholar
  20. Nelson RP, Papaloizou JCB (1999) Mon Not R Astron Soc 309:929ADSCrossRefGoogle Scholar
  21. Neufeld DA, Maloney PR (1995) Astrophys J Lett 447:L17ADSCrossRefGoogle Scholar
  22. Okazaki AT, Kato S, Fukue J (1987) Publ Astron Soc Jpn 39:457ADSGoogle Scholar
  23. Papaloizou JCB, Lin DNC (1995) Astrophys J 438:841ADSCrossRefGoogle Scholar
  24. Papaloizou JCB, Pringle JE (1983) Mon Not R Astron Soc 202:1181ADSCrossRefGoogle Scholar
  25. Petterson JA (1977) Astrophys J 214:550ADSMathSciNetCrossRefGoogle Scholar
  26. Petterson JA (1978) Astrophys J 226:253ADSCrossRefGoogle Scholar
  27. Teixeira D, Fragile PC, Zhuravlev VV, Ivanov PB (2014) Astrophys J 796:103ADSCrossRefGoogle Scholar
  28. Thorne KS, Price RH (1986) Macdonald DA, Black holes: the membrane paradigm. Yale University Press, Yale (Chapter 3, Paragraph A)Google Scholar
  29. Veledina A, Poutanen J, Ingram A (2013) Astrophys J 778:165ADSCrossRefGoogle Scholar
  30. Wu S-M, Chen L, Yuan F (2010) Mon Not R Astron Soc 402:537ADSCrossRefGoogle Scholar
  31. Wu Q, Yan H, Yi Z (2013) Mon Not R Astron Soc 436:1278ADSCrossRefGoogle Scholar
  32. Zhuravlev VV, Ivanov PB (2011) Mon Not R Astron Soc 415:2122ADSCrossRefGoogle Scholar
  33. Zhuravlev VV, Ivanov PB, Fragile PC, Teixeira D (2014) Astrophys J 796:104ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations