The Standard Model of Disc Accretion

Part of the Astrophysics and Space Science Library book series (ASSL, volume 454)


Accretion discs are powerful energy factories in our Universe. They effectively transform the potential energy of gravitational interaction to emission, thereby unraveling the physics of distant objects. This is possible due to the presence of viscosity, driven by turbulent motions in accretion discs. In this chapter, we describe the equations for disc accretion in the framework of the standard model. We outline basic elements of the theory of turbulent viscosity and the emergence of the α-parameter. We further describe the radial and vertical structure of thin stationary accretion discs, and present analytical solutions to the basic equation of the evolution of a viscous accretion disc for both an infinite disc and for a disc in a binary system. Finally, we present a numerical method to solve the equations of disc evolution and vertical structure simultaneously.


  1. Abramowicz MA (2016) Velocity, acceleration and gravity in Einstein’s relativity. ArXiv e-prints 1608.07136Google Scholar
  2. Abramowicz MA, Fragile PC (2013) Foundations of black hole accretion disk theory. Living Rev Relativ 16:1. ArXiv 1104.5499
  3. Anderson DG (1965) Iterative procedures for nonlinear integral equations. J ACM 12(4):547–560. MathSciNetzbMATHCrossRefGoogle Scholar
  4. Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys J 376:214–233. ADSCrossRefGoogle Scholar
  5. Balbus SA, Hawley JF (1998) Instability, turbulence, and enhanced transport in accretion disks. Rev Mod Phys 70:1–53. ADSCrossRefGoogle Scholar
  6. Barenblatt GI (1996) Scaling, Self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge texts in applied mathematics. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  7. Barenblatt G (2003) Scaling. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge. Google Scholar
  8. Bisikalo DV, Zhilkin AG, Boyarchuk AA (2013) Gaseous dynamic of close binary stars. FIZMATLIT (in Russian), MoscowGoogle Scholar
  9. Bisnovatyi-Kogan GS, Blinnikov SI (1976) A hot corona around a black-hole accretion disk as a model for Cygnus X-1. Sov Astron Lett 2:191–193. ArXiv astro-ph/0003275Google Scholar
  10. Bisnovatyi-Kogan GS, Lovelace RVE (2001) Advective accretion disks and related problems including magnetic fields. New Astron Rev 45:663–742. ArXiv astro-ph/0207625ADSCrossRefGoogle Scholar
  11. Brandenburg A, Nordlund A, Stein RF, Torkelsson U (1996) The disk accretion rate for dynamo-generated turbulence. Astrophys J 458:L45. ADSCrossRefGoogle Scholar
  12. Cannizzo JK (1992) Accretion disks in active galactic nuclei - vertically explicit models. Astrophys J 385:94–107. ADSCrossRefGoogle Scholar
  13. Cannizzo JK (1998) The accretion disk limit cycle mechanism in the black hole x-ray binaries: toward an understanding of the systematic effects. Astrophys J 494:366. ADSCrossRefGoogle Scholar
  14. Cannizzo JK, Lee HM, Goodman J (1990) The disk accretion of a tidally disrupted star onto a massive black hole. Astrophys J 351:38–46. ADSCrossRefGoogle Scholar
  15. Cantrell AG, Bailyn CD, Orosz JA, McClintock JE, Remillard RA, Froning CS, Neilsen J, Gelino DM, Gou L (2010) The inclination of the soft x-ray transient A0620-00 and the mass of its black hole. Astrophys J 710:1127–1141. ArXiv 1001.0261ADSCrossRefGoogle Scholar
  16. Chandrasekhar S (1960) The stability of non-dissipative Couette flow in hydromagnetics. Proc Natl Acad Sci 46:253–257. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. Chen W, Shrader CR, Livio M (1997) The properties of x-ray and optical light curves of x-ray novae. Astrophys J 491:312. ADSCrossRefGoogle Scholar
  18. Coroniti FV (1981) On the magnetic viscosity in Keplerian accretion disks. Astrophys J 244:587–599. ADSCrossRefGoogle Scholar
  19. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480. ADSzbMATHCrossRefGoogle Scholar
  20. Dubrulle B (1993) Differential rotation as a source of angular momentum transfer in the solar nebula. Icarus 106:59. ADSCrossRefGoogle Scholar
  21. Dubus G, Lasota JP, Hameury JM, Charles P (1999) X-ray irradiation in low-mass binary systems. Mon Not R Astron Soc 303:139–147ADSCrossRefGoogle Scholar
  22. Duerbeck HW, Walter K (1976) A periodic brightness variation of the optical counterpart of A 0620-00. NASA Spec Publ 389:343–345Google Scholar
  23. Eardley DM, Lightman AP (1975) Magnetic viscosity in relativistic accretion disks. Astrophys J 200:187–203. ADSCrossRefGoogle Scholar
  24. Favre AJ (1969) Statistical equations of turbulents gases. 231–267Google Scholar
  25. Felten JE, Rees MJ (1972) Continuum radiative transfer in a hot plasma, with application to Scorpius X-l. Astron Astrophys 17:226ADSGoogle Scholar
  26. Ferguson JW, Alexander DR, Allard F, Barman T, Bodnarik JG, Hauschildt PH, Heffner-Wong A, Tamanai A (2005) Low-temperature opacities. Astrophys J 623:585–596. ArXiv astro-ph/0502045ADSCrossRefGoogle Scholar
  27. Filipov LG (1984) Self-similar problems of the time-dependant discs accretion and the nature of the temporary X-ray sources. Adv Space Res 3:305–313. ADSCrossRefGoogle Scholar
  28. Frank J, King A, Raine DJ (2002) Accretion power in astrophysics, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Fridman AM (1989) On the dynamics of a viscous differentially rotating gravitating medium. Sov Astron Lett 15:487ADSGoogle Scholar
  30. Galeev AA, Rosner R, Vaiana GS (1979) Structured coronae of accretion disks. Astrophys J 229:318–326. ADSCrossRefGoogle Scholar
  31. Gorbatskii VG (1965) Disk-like envelopes in close binary systems and their effect on stellar spectra. Sov. Astron. 8:680ADSGoogle Scholar
  32. Gou L, McClintock JE, Steiner JF, Narayan R, Cantrell AG, Bailyn CD, Orosz JA (2010) The spin of the black hole in the soft x-ray transient A0620-00. Astrophys J 718:L122–L126. ArXiv 1002.2211ADSCrossRefGoogle Scholar
  33. Hameury JM, Lasota JP (2005) Tidal torques, disc radius variations, and instabilities in dwarf novae and soft X-ray transients. Astron Astrophys 443:283–289. ArXiv arXiv:astro-ph/0508509ADSCrossRefGoogle Scholar
  34. Hameury JM, Menou K, Dubus G, Lasota JP, Hure JM (1998) Accretion disc outbursts: a new version of an old model. Mon Not R Astron Soc 298:1048–1060ADSCrossRefGoogle Scholar
  35. Ichikawa S, Osaki Y (1994) Tidal torques on accretion disks in close binary systems. Publ Astron Soc Jpn 46:621–628ADSGoogle Scholar
  36. Iglesias CA, Rogers FJ (1996) Updated opal opacities. Astrophys J 464:943. ADSCrossRefGoogle Scholar
  37. Ivanov PB, Papaloizou JCB, Polnarev AG (1999) The evolution of a supermassive binary caused by an accretion disc. Mon Not R Astron Soc 307:79–90. ArXiv astro-ph/9812198ADSCrossRefGoogle Scholar
  38. Kaluzienski LJ, Holt SS, Boldt EA, Serlemitsos PJ (1977) All-Sky Monitor observations of the decay of A0620-00 /Nova Monocerotis 1975/. Astrophys J 212:203–210. ADSCrossRefGoogle Scholar
  39. Kato S, Fukue J, Mineshige S (1998) Black-hole accretion disks. Kyoto University Press, KyotoGoogle Scholar
  40. Kato S, Fukue J, Mineshige S (2008) Black-hole accretion disks — towards a new paradigm —, 549 ppGoogle Scholar
  41. Ketsaris NA, Shakura NI (1998) On the calculation of the vertical structure of accretion discs. Astron Astrophys Trans 15:193. ADSCrossRefGoogle Scholar
  42. King AR, Ritter H (1998) The light curves of soft X-ray transients. Mon Not R Astron Soc 293:L42–L48ADSCrossRefGoogle Scholar
  43. Kotko I, Lasota JP (2012) The viscosity parameter α and the properties of accretion disc outbursts in close binaries. Astron Astrophys 545:A115. ArXiv 1209.0017ADSCrossRefGoogle Scholar
  44. Kurucz RL (1970) Atlas: a computer program for calculating model stellar atmospheres. SAO Special Report. Smithsonian Astrophysical Observatory, CambridgeGoogle Scholar
  45. Kurucz R (1993) Kurucz CD-ROMs, Smithsonian Astrophysical Observatory, CambridgeGoogle Scholar
  46. Landau LD, Lifshitz EM (1959) Fluid mechanics, Course of Theoretical Physics, vol 6CrossRefGoogle Scholar
  47. Landau LD, Lifshitz EM (1973) The classical theory of fields. Course of theoretical physics, vol 2, Sect. 88. Pergamon, OxfordGoogle Scholar
  48. Lasota JP (2001) The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron Rev 45:449–508ADSCrossRefGoogle Scholar
  49. Lasota JP (2015) Black hole accretion discs. ArXiv e-prints 1505.02172Google Scholar
  50. Lightman AP, Eardley DM (1974) Black holes in binary systems: instability of disk accretion. Astrophys J 187:L1+ADSCrossRefGoogle Scholar
  51. Lin DNC, Bodenheimer P (1982) On the evolution of convective accretion disk models of the primordial solar nebula. Astrophys J 262:768–779. ADSCrossRefGoogle Scholar
  52. Lin DNC, Pringle JE (1987) A viscosity prescription for a self-gravitating accretion disc. Mon Not R Astron Soc 225:607–613ADSCrossRefGoogle Scholar
  53. Lipunova GV (2015) Evolution of finite viscous disks with time-independent viscosity. Astrophys J 804:87. ArXiv 1503.09093ADSCrossRefGoogle Scholar
  54. Lipunova GV, Malanchev KL (2017) Determination of the turbulent parameter in accretion discs: effects of self-irradiation in 4U 1543-47 during the 2002 outburst. Mon Not R Astron Soc 468:4735–4747. ArXiv 1610.01399ADSCrossRefGoogle Scholar
  55. Lipunova GV, Shakura NI (2000) New solution to viscous evolution of accretion disks in binary systems. Astron Astrophys 356:363–372ADSGoogle Scholar
  56. Lipunova GV, Shakura NI (2002) Non-steady-state accretion disks in x-ray novae: outburst models for Nova Monocerotis 1975 and Nova Muscae 1991. Astron Rep 46:366–379ADSCrossRefGoogle Scholar
  57. Lloyd C, Noble R, Penston MV (1977) The light curve of V616 Mon = A0620-00. Mon Not R Astron Soc 179:675–681. ADSCrossRefGoogle Scholar
  58. Lüst RZ (1952) Die Entwicklung einer um einen Zentralkörper rotierenden Gasmasse. I. Lösungen der hydrodynamischen Gleichungen mit turbulenter Reibung. Zeitschrift Naturforschung Teil A 7:87Google Scholar
  59. Lynden-Bell D (1969) Galactic nuclei as collapsed old quasars. Nature 223:690ADSCrossRefGoogle Scholar
  60. Lynden-Bell D, Pringle JE (1974) The evolution of viscous discs and the origin of the nebular variables. Mon Not R Astron Soc 168:603–637ADSCrossRefGoogle Scholar
  61. Lyubarskij YE, Shakura NI (1987) Nonlinear self-similar problems of nonstationary disk accretion. Sov Astron Lett 13:386ADSGoogle Scholar
  62. MacRobert TM (1932) Fourier integrals. Proc R Soc Edinb 51:116–126zbMATHCrossRefGoogle Scholar
  63. Malanchev KL, Shakura NI (2015) Vertical convection in turbulent accretion disks and light curves of the X-ray nova A0620-00 1975 outburst. Astron Lett 41:797–808. ArXiv 1511.02356ADSCrossRefGoogle Scholar
  64. Marov M, Kolesnichenko A (2011) Turbulence and self-organization: modeling astrophysical objects. Astrophysics and Space Science Library, Springer, New York. Google Scholar
  65. Mescheryakov AV, Revnivtsev MG, Filippova EV (2011a) Parameters of irradiated accretion disks from optical and X-ray observations of GS 1826-238. Astron Lett 37:826–844. ADSCrossRefGoogle Scholar
  66. Mescheryakov AV, Shakura NI, Suleimanov VF (2011b) Vertical structure of the outer accretion disk in persistent low-mass X-ray binaries. Astron Lett 37:311–331. ArXiv 1108.4222ADSCrossRefGoogle Scholar
  67. Meyer F, Meyer-Hofmeister E (1981) On the elusive cause of cataclysmic variable outbursts. Astron Astrophys 104:L10ADSGoogle Scholar
  68. Meyer F, Meyer-Hofmeister E (1982) Vertical structure of accretion disks. Astron Astrophys 106:34–42ADSGoogle Scholar
  69. Meyer F, Meyer-Hofmeister E (1984) HZ Her/Her X-1 - an alternative model for the 35d cycle? Astron Astrophys 140:L35–L38ADSGoogle Scholar
  70. Mihalas D (1978) Stellar atmospheres, 2nd edn. W. H. Freeman and Co., San FranciscoGoogle Scholar
  71. Mihalas D, Mihalas BW (1984) Foundations of radiation hydrodynamics. Courier Corporation, North ChelmsfordzbMATHGoogle Scholar
  72. Monin A, Yaglom A (1971) Statistical fluid mechanics: mechanics of turbulence. vol 1. Peace Corps.
  73. Morozov AG, Khoperskov AV (2005) Physics of discs. Volgograd University Press, Volgograd (in Russian)Google Scholar
  74. Nakao Y, Kato S (1995) Vertical dependence of the viscous heating in accretion disks. Publ Astron Soc Jpn 47:451–461ADSGoogle Scholar
  75. Novikov ID, Thorne KS (1973) Astrophysics of black holes. In: DeWitt C, DeWitt BS (eds) Black holes (Les Astres Occlus), Gordon and Breach, New York, pp 343–450Google Scholar
  76. Ogilvie GI (1999) Time-dependent quasi-spherical accretion. Mon Not R Astron Soc 306:L9–L13ADSCrossRefGoogle Scholar
  77. Paczynski B (1977) A model of accretion disks in close binaries. Astrophys J 216:822–826ADSCrossRefGoogle Scholar
  78. Paczynski B, Bisnovatyi-Kogan G (1981) A model of a thin accretion disk around a Black Hole. Acta Astron. 31:283ADSGoogle Scholar
  79. Paczynsky B, Wiita PJ (1980) Thick accretion disks and supercritical luminosities. Astron Astrophys 88:23–31ADSMathSciNetGoogle Scholar
  80. Papaloizou J, Pringle JE (1977) Tidal torques on accretion discs in close binary systems. Mon Not R Astron Soc 181:441–454ADSzbMATHCrossRefGoogle Scholar
  81. Pletcher R, Tannehill J, Anderson D (1997) Computational fluid mechanics and heat transfer, 2nd edn. Series in computational and physical processes in mechanics and thermal sciences, Taylor & Francis. zbMATHGoogle Scholar
  82. Prandtl L (1925) Bericht uber Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5:136–139. zbMATHGoogle Scholar
  83. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  84. Pringle JE (1974) PhD thesis, University of Cambridge, 1974Google Scholar
  85. Pringle JE (1991) The properties of external accretion discs. Mon Not R Astron Soc 248:754–759ADSCrossRefGoogle Scholar
  86. Pringle JE, Rees MJ (1972) Accretion disc models for compact x-ray sources. Astron Astrophys 21:1ADSGoogle Scholar
  87. Rafikov RR (2013) Structure and evolution of circumbinary disks around supermassive black hole binaries. Astrophys J 774:144. ArXiv 1205.5017ADSCrossRefGoogle Scholar
  88. Rafikov RR (2016) Generalized similarity for accretion/decretion disks. Astrophys J 830:7. ArXiv 1604.07439ADSCrossRefGoogle Scholar
  89. Rayleigh L (1917) On the dynamics of revolving fluids. Proc R Soc Lond Ser A 93:148–154. ADSzbMATHCrossRefGoogle Scholar
  90. Richard D, Zahn JP (1999) Turbulence in differentially rotating flows. What can be learned from the Couette-Taylor experiment. Astron Astrophys 347:734–738. ArXiv astro-ph/9903374Google Scholar
  91. Shafee R, Narayan R, McClintock JE (2008) Viscous torque and dissipation in the inner regions of a thin accretion disk: implications for measuring black hole spin. Astrophys J 676:549–561. ArXiv 0705.2244ADSCrossRefGoogle Scholar
  92. Shakura NI (1973) Disk model of gas accretion on a relativistic star in a close binary system. Sov Astron 16:756ADSGoogle Scholar
  93. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355ADSGoogle Scholar
  94. Shakura NI, Sunyaev RA (1976) A theory of the instability of disk accretion on to black holes and the variability of binary X-ray sources, galactic nuclei and quasars. Mon Not R Astron Soc 175:613–632ADSCrossRefGoogle Scholar
  95. Shakura NI, Sunyaev RA, Zilitinkevich SS (1978) On the turbulent energy transport in accretion discs. Astron Astrophys 62:179–187ADSGoogle Scholar
  96. Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs, and neutron stars: The physics of compact objects. Research supported by the National Science Foundation. Wiley-Interscience, New York, 663 ppCrossRefGoogle Scholar
  97. Shaviv G, Wehrse R (1986) The vertical temperature stratification and corona formation of accretion disc atmospheres. Astron Astrophys 159:L5–L7ADSzbMATHGoogle Scholar
  98. Shibazaki N, Hōshi R (1975) Structure and stability of accretion-disk around a black-hole. Prog Theor Phys 54:706–718ADSCrossRefGoogle Scholar
  99. Smak J (1984) Accretion in cataclysmic binaries. IV - Accretion disks in dwarf novae. Acta Astron 34:161–189ADSGoogle Scholar
  100. Sneddon IN (1951) Fourier transforms. International series in pure and applied mathematics. McGraw-Hill. zbMATHGoogle Scholar
  101. Sobolev VV (1969) Course in theoretical astrophysics, 1, vol. F-531. NASA, nasa technical translation 1Google Scholar
  102. Speith R, Riffert H, Ruder H (1995) The photon transfer function for accretion disks around a Kerr black hole. Comput Phys Commun 88:109–120. ADSCrossRefGoogle Scholar
  103. Suleimanov VF (1992) Modeling the accretion disks and spectra of cataclysmic variables - Part One - V603-AQUILAE. Sov Astron Lett 18:104–+Google Scholar
  104. Suleimanov VF, Lipunova GV, Shakura NI (2007) The thickness of accretion α-disks: theory and observations. Astron Rep 51:549–562. ADSCrossRefGoogle Scholar
  105. Suleimanov VF, Lipunova GV, Shakura NI (2008) Modeling of non-stationary accretion disks in X-ray novae A 0620-00 and GRS 1124-68 during outburst. Astron Astrophys 491:267–277. ArXiv 0805.1001ADSCrossRefGoogle Scholar
  106. Syunyaev RA, Shakura NI (1977) Disk reservoirs in binary systems and prospects for observing them. Sov Astron Lett 3:138–141ADSGoogle Scholar
  107. Tanaka T (2011) Exact time-dependent solutions for the thin accretion disc equation: boundary conditions at finite radius. Mon Not R Astron Soc 410:1007–1017. ArXiv 1007.4474ADSCrossRefGoogle Scholar
  108. Tayler RJ (1980) Vertical energy transport in optically thick steady accretion discs. Mon Not R Astron Soc 191:135–150ADSGoogle Scholar
  109. Thorne KS, Price RH, MacDonald DA (1986) Black holes: the membrane paradigm. Yale University Press, New HavenzbMATHGoogle Scholar
  110. Tout CA, Pringle JE (1992) Accretion disc viscosity - a simple model for a magnetic dynamo. Mon Not R Astron Soc 259:604–612ADSCrossRefGoogle Scholar
  111. Velikhov EP (1959) Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov J Exp Theor Phys 9:995–998MathSciNetGoogle Scholar
  112. Watson G (1944) A treatise on the theory of Bessel functions. Cambridge University Press. zbMATHGoogle Scholar
  113. Weizsäcker CFV (1948) Die Rotation kosmischer Gasmassen. Zeitschrift Naturforschung Teil A 3:524ADSMathSciNetzbMATHGoogle Scholar
  114. Wood KS, Titarchuk L, Ray PS, Wolff MT, Lovellette MN, Bandyopadhyay RM (2001) Disk diffusion propagation model for the outburst of XTE J1118+480. Astrophys J 563:246–254. ArXiv astro-ph/0108189ADSCrossRefGoogle Scholar
  115. Zaitsev V, Polyanin A (2012) Handbook of exact solutions for ordinary differential equations. Taylor & Francis. zbMATHGoogle Scholar
  116. Zdziarski AA, Kawabata R, Mineshige S (2009) Viscous propagation of mass flow variability in accretion discs. Mon Not R Astron Soc 399:1633–1640. ArXiv 0902.4530ADSCrossRefGoogle Scholar
  117. Zeldovich YB (1981) On the friction of fluids between rotating cylinders. R Soc Lond Proc Ser 374:299–312. ADSMathSciNetCrossRefGoogle Scholar
  118. Zeldovich YB, Kompaneets AS (1950) Sbornik posvyashchennyy 70-leityu A. F. Ioffe (in: Collection of papers celebrating the seventieth birthday of A. F. Ioffe). AN SSSR, Moscow, in RussianGoogle Scholar
  119. Zeldovich YB, Raizer YP (1967) Physics of shock waves and high-temperature hydrodynamic phenomena. Dover, New YorkGoogle Scholar
  120. Zel’dovich YB, Shakura NI (1969) X-ray emission accompanying the accretion of gas by a neutron star. Sov Astron 13:175ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations