Automatic Detection and Characterization of Biomarkers in OCT Images

  • Melinda Katona
  • Attila Kovács
  • László Varga
  • Tamás Grósz
  • József Dombi
  • Rózsa Dégi
  • László G. NyúlEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10882)


Optical Coherence Tomography (OCT) is one of the most advanced, non-invasive method of eye examination. Age-related macular degeneration (AMD) is one of the most frequent reasons of acquired blindness. Our aim is to develop automatic methods that can accurately identify and characterize biomarkers in OCT images, related to AMD. We present methods for quantizing hyperreflective foci (HRF) with deep learning. We also describe an algorithm for determining pigmentepithelial detachment (PED) and localizing outer retinal tubulation (ORT) that appears between the layers of the retina.


Age-related macular degeneration Biomarker Pigmentepithelial detachment Hyperreflective foci Outer retinal tubulation Optical coherence tomography 



We would like to thank the NVIDIA Corporation for the donation of the Tesla K40 GPU used for this research. Tamás Grósz was supported by the ÚNKP-17-3 New National Excellence Programme of the Ministry of Human Capacities.


  1. 1.
    Beaudet, P.: Rotationally invariant image operators. In: International Joint Conference on Pattern Recognition, Kyoto, Japan, pp. 579–583 (1978)Google Scholar
  2. 2.
    Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323. PMLR (2011)Google Scholar
  3. 3.
    Haq, A., Wilk, S.: Detection of wet age-related macular degeneration in OCT images: a case study. Innovations in Biomedical Engineering. AISC, vol. 623, pp. 43–51. Springer, Cham (2018). Scholar
  4. 4.
    Hee, M.R., et al.: Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103(8), 1260–1270 (1996)CrossRefGoogle Scholar
  5. 5.
    Katona, M., Kovács, A., Dégi, R., Nyúl, L.G.: Automatic detection of subretinal fluid and cyst in retinal images. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 606–616. Springer, Cham (2017). Scholar
  6. 6.
    Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based Segmentation of Medical Imaging Data. CoRR abs/1701.03056 (2017)Google Scholar
  7. 7.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)Google Scholar
  8. 8.
    Mokhtari, M., Kamasi, Z.G., Rabbani, H.: Automatic detection of Hyperreflective foci in optical coherence tomography b-scans using morphological component analysis. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1497–1500 (July 2017)Google Scholar
  9. 9.
    Shi, F., et al.: Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments. IEEE Trans. Med. Imaging 34(2), 441–452 (2015)CrossRefGoogle Scholar
  10. 10.
    Velez-Montoya, R., et al.: Current knowledge and trends in age-related macular degeneration: today’s and future treatments. Retina 334, 1487–1502 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Melinda Katona
    • 1
  • Attila Kovács
    • 4
  • László Varga
    • 1
  • Tamás Grósz
    • 2
  • József Dombi
    • 3
  • Rózsa Dégi
    • 4
  • László G. Nyúl
    • 1
    Email author
  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE Research Group on Artificial IntelligenceUniversity of SzegedSzegedHungary
  3. 3.Department of Computer Algorithms and Artificial IntelligenceUniversity of SzegedSzegedHungary
  4. 4.Department of OphthalmologyUniversity of SzegedSzegedHungary

Personalised recommendations