Skip to main content

Hard Exudate Detection Using Local Texture Analysis and Gaussian Processes

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

  • 5074 Accesses

Abstract

Exudates are the most noticeable sign in the first stage of diabetic retinopathy. This disease causes about five percent of world blindness. Making use of retinal fundus images, exudates can be detected, which helps the early diagnosis of the pathology. In this work, a novel method for automatic hard exudate detection is presented. After an exhaustive pre-processing step, Local Binary Patterns Variance (LBPV) histograms are used to locally extract texture information. We then use Gaussian Processes to distinguish between healthy and pathological retinal patches. The proposed methodology is validated using the E-OPHTA exudates database. The experimental results demonstrate that Gaussian Process classifiers outperform the current state of the art classifiers for this problem.

This work has been supported in part by the Ministerio de Economía y Competitividad under contracts DPI2016-77869-C2-{1,2}-R, and the Department of Energy grant DE-NA0002520. The work of Adrián Colomer has been supported by the Spanish FPI Grant BES-2014-067889. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (WHO): Universal eye health: a global action plan 2014–2019. Technical report (2015)

    Google Scholar 

  2. American Academy of Ophtalmology (AAO) Retina/Vitreous Panel: Preferred Practice Pattern ® Guidelines. Diabetic Retinopathy, San Francisco (2016)

    Google Scholar 

  3. Morales, S., Engan, K., Naranjo, V., Colomer, A.: Retinal disease screening through local binary patterns. IEEE J. Biomed. Health Inform. 21(1), 184–192 (2017)

    Article  Google Scholar 

  4. Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)

    Article  Google Scholar 

  5. JayaKumari, C., Maruthi, R.: Detection of hard exudates in color fundus images of the human retina. Procedia Eng. 30, 297–302 (2012). International Conference on Communication Technology and System Design 2011

    Article  Google Scholar 

  6. Walter, T., Klein, J.C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy - detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)

    Article  Google Scholar 

  7. Karegowda, A.G., Nasiha, A., Jayaram, M.A., Manjunath, A.S.: Article: exudates detection in retinal images using back propagation neural network. Int. J. Comput. Appl. 25(3), 25–31 (2011)

    Google Scholar 

  8. Sopharak, A., Dailey, M.N., Uyyanonvara, B., et al.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010)

    Article  Google Scholar 

  9. Zhang, X., Thibault, G., et al.: Spatial normalization of eye fundus images. In: ISBI 2012 : 9th IEEE International Symposium on Biomedical Imaging, IEEE (2012)

    Google Scholar 

  10. Guillemot, C., Le Meur, O.: Image inpainting: overview and recent advances. IEEE Sig. Process. Mag. 31(1), 127–144 (2014)

    Article  Google Scholar 

  11. Colomer, A., Naranjo, V., Angulo, J.: Colour normalization of fundus images based on geometric transformations applied to their chromatic histogram. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3135–3139, September 2017

    Google Scholar 

  12. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  13. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)

    Article  Google Scholar 

  14. Morales, S., Naranjo, V., Angulo, J., Alcaniz, M.: Automatic detection of optic disc based on pca and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)

    Article  Google Scholar 

  15. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. Adaptive computation and machine learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  16. Parisi, G.: Statistical Field Theory. New edn. Perseus Books, Reading (1998)

    Google Scholar 

  17. Bishop, C.: Pattern Recognition and Machine Learning. 1st edn. Springer, New York (2006). Corr. 2nd printing 2011 edn., February 2010

    Google Scholar 

  18. Tapia, S.L., Molina, R., de la Blanca, N.P.: Detection and localization of objects in passive millimeter wave Images. In: 2016 24th European Signal Processing Conference (EUSIPCO), pp. 2101–2105, August 2016

    Google Scholar 

  19. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  20. Decencière, E., Cazuguel, G., Zhang, X., et al.: Teleophta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)

    Article  Google Scholar 

  21. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  22. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  23. Matthews, B.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 405(2), 442–451 (1975)

    Article  Google Scholar 

  24. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Colomer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colomer, A., Ruiz, P., Naranjo, V., Molina, R., Katsaggelos, A.K. (2018). Hard Exudate Detection Using Local Texture Analysis and Gaussian Processes. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics