Abstract
Exudates are the most noticeable sign in the first stage of diabetic retinopathy. This disease causes about five percent of world blindness. Making use of retinal fundus images, exudates can be detected, which helps the early diagnosis of the pathology. In this work, a novel method for automatic hard exudate detection is presented. After an exhaustive pre-processing step, Local Binary Patterns Variance (LBPV) histograms are used to locally extract texture information. We then use Gaussian Processes to distinguish between healthy and pathological retinal patches. The proposed methodology is validated using the E-OPHTA exudates database. The experimental results demonstrate that Gaussian Process classifiers outperform the current state of the art classifiers for this problem.
This work has been supported in part by the Ministerio de Economía y Competitividad under contracts DPI2016-77869-C2-{1,2}-R, and the Department of Energy grant DE-NA0002520. The work of Adrián Colomer has been supported by the Spanish FPI Grant BES-2014-067889. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization (WHO): Universal eye health: a global action plan 2014–2019. Technical report (2015)
American Academy of Ophtalmology (AAO) Retina/Vitreous Panel: Preferred Practice Pattern ® Guidelines. Diabetic Retinopathy, San Francisco (2016)
Morales, S., Engan, K., Naranjo, V., Colomer, A.: Retinal disease screening through local binary patterns. IEEE J. Biomed. Health Inform. 21(1), 184–192 (2017)
Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)
JayaKumari, C., Maruthi, R.: Detection of hard exudates in color fundus images of the human retina. Procedia Eng. 30, 297–302 (2012). International Conference on Communication Technology and System Design 2011
Walter, T., Klein, J.C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy - detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)
Karegowda, A.G., Nasiha, A., Jayaram, M.A., Manjunath, A.S.: Article: exudates detection in retinal images using back propagation neural network. Int. J. Comput. Appl. 25(3), 25–31 (2011)
Sopharak, A., Dailey, M.N., Uyyanonvara, B., et al.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010)
Zhang, X., Thibault, G., et al.: Spatial normalization of eye fundus images. In: ISBI 2012 : 9th IEEE International Symposium on Biomedical Imaging, IEEE (2012)
Guillemot, C., Le Meur, O.: Image inpainting: overview and recent advances. IEEE Sig. Process. Mag. 31(1), 127–144 (2014)
Colomer, A., Naranjo, V., Angulo, J.: Colour normalization of fundus images based on geometric transformations applied to their chromatic histogram. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3135–3139, September 2017
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)
Morales, S., Naranjo, V., Angulo, J., Alcaniz, M.: Automatic detection of optic disc based on pca and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)
Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. Adaptive computation and machine learning. MIT Press, Cambridge (2006)
Parisi, G.: Statistical Field Theory. New edn. Perseus Books, Reading (1998)
Bishop, C.: Pattern Recognition and Machine Learning. 1st edn. Springer, New York (2006). Corr. 2nd printing 2011 edn., February 2010
Tapia, S.L., Molina, R., de la Blanca, N.P.: Detection and localization of objects in passive millimeter wave Images. In: 2016 24th European Signal Processing Conference (EUSIPCO), pp. 2101–2105, August 2016
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Decencière, E., Cazuguel, G., Zhang, X., et al.: Teleophta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)
Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)
Matthews, B.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 405(2), 442–451 (1975)
Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Colomer, A., Ruiz, P., Naranjo, V., Molina, R., Katsaggelos, A.K. (2018). Hard Exudate Detection Using Local Texture Analysis and Gaussian Processes. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_73
Download citation
DOI: https://doi.org/10.1007/978-3-319-93000-8_73
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92999-6
Online ISBN: 978-3-319-93000-8
eBook Packages: Computer ScienceComputer Science (R0)