Skip to main content

Multiclass Classification of Breast Cancer in Whole-Slide Images

Part of the Lecture Notes in Computer Science book series (LNIP,volume 10882)

Abstract

Breast cancer is one of the leading cause of cancer-related death worldwide. During the diagnosis of breast cancer, the histopathological assessment of Haemotoxylin and Eosin(H&E) stained slides provides important clinical values. By applying computer-aid diagnosis on whole-slide image(WSI), the efficiency and consistency of such assessment could be improved. In this paper, we propose a deep learning-based framework that classifies H&E stained WSIs into regions of normal tissue, benign lesion, in-situ carcinoma and invasive carcinoma. The framework utilizes both microscopy images and WSIs to train a patch classifier in two stages. The underlying classifier is based on Inception-Resnet-v2. This framework won both parts of the ICIAR2018 Grand Challenge on Breast Cancer Histology Images [4] competition, achieved a part A multiclass accuracy of 87% and part B score of 0.6929.

Keywords

  • Breast cancer
  • Deep learning
  • Whole-Slide Images
  • Multiclass classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93000-8_106
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-93000-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Camelyon16 (2016). https://camelyon16.grand-challenge.org/results/

  2. Camelyon17 (2017). https://camelyon17.grand-challenge.org/results/

  3. Breast Cancer Facts and Figures 2017–2018 (2018). https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html

  4. ICIAR 2018 Grand Challenge on Breast Cancer Histology Images (2018). https://iciar2018-challenge.grand-challenge.org/

  5. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PLOS ONE 12(6), 1–14 (2017). https://doi.org/10.1371/journal.pone.0177544

    CrossRef  Google Scholar 

  6. Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A.N.A., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122–1132 (2015). https://doi.org/10.1001/jama.2015.1405

    CrossRef  Google Scholar 

  7. Habibzadeh, M.N., Jannesary, M., Aboulkheyr, H., Khosravi, P., Elemento, O., Totonchi, M., Hajirasouliha, I.: Breast cancer histopathological image classification: a deep learning approach. bioRxiv (2018). https://www.biorxiv.org/content/early/2018/01/04/242818

  8. Jain, R.K., Mehta, R., Dimitrov, R., Larsson, L.G., Musto, P.M., Hodges, K.B., Ulbright, T.M., Hattab, E.M., Agaram, N., Idrees, M.T., Badve, S.: Atypical ductal hyperplasia: interobserver and intraobserver variability. Mod. Pathol. 24, 917–923 (2011)

    CrossRef  Google Scholar 

  9. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7(1), 29 (2016). http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2016;volume=7;issue=1;spage=29;epage=29;aulast=Janowczyk;t=6

    CrossRef  Google Scholar 

  10. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    CrossRef  MathSciNet  Google Scholar 

  11. Schnitt, S., Connolly, J., Tavassoli, F.A., Fechner, R., Kempson, R.L., Gelman, R., Page, D.: Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am. J. Surg. Pathol. 16(12), 1133–1143 (1992)

    CrossRef  Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv e-prints, September 2014

    Google Scholar 

  13. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    CrossRef  Google Scholar 

  14. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, ArXiv e-prints, February 2016

    Google Scholar 

  15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going Deeper with Convolutions. ArXiv e-prints, September 2014

    Google Scholar 

  16. Zhong, A., Li, Q.: HMS-MGH-CCDS Camelyon17 presentation (2017). https://camelyon17.grand-challenge.org/serve/public_html/presentations/HMS-MGH-CCDS_Camelyon17_presentation.pptx

Download references

Acknowledgements

We would like to thank the organizers of ICIAR2018 and BACH2018 who supported and organized this challenge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scotty Kwok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kwok, S. (2018). Multiclass Classification of Breast Cancer in Whole-Slide Images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_106

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)