We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Detecting Signals with Known Form: Matched Filters | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Detecting Signals with Known Form: Matched Filters

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Underwater Acoustic Signal Processing

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The focus of this chapter is on the detection of signals that have a known form or structure when they are occluded by additive noise. The most common example of signals with known form is from active remote sensing where a known source signal is projected into the underwater environment and the sounds measured by a sensor are then analyzed to achieve one of the inferential objectives. Matched-filter detectors (also known as replica correlators or pulse compressors) are derived under a variety of assumptions about the signal amplitude and phase. Waveform autocorrelation and ambiguity functions are introduced to represent the response of the matched filter to mismatch in time and Doppler and presented for the standard sonar pulses (continuous-wave, linear- and hyperbolic-frequency-modulated pulses). Conventional beamforming of an array of sensors is shown to be a spatial matched filter detector. The differences between resolution, accuracy, and ambiguity with respect to parameter estimation are articulated. Lower bounds on the variance are derived for estimating signal strength, phase, time of arrival, and Doppler scale, including examples using the standard sonar pulses. Many practical aspects of sonar signal processing are covered including the effect of oversampling on false alarm rate, normalization of a time-varying background noise and reverberation power (cell-averaging and order-statistic normalizers), Doppler filter banks (with a fast-Fourier-transform implementation for continuous-wave pulses), and using incoherent integration to surmount temporal spreading losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As described in Sect. 6.3.4, the likelihood function of a parameter is simply the PDF taken as a function of the parameter.

  2. 2.

    This is more accurately described as a fractional SNR.

  3. 3.

    One might say there is ambiguity in the definition.

  4. 4.

    Note that definitions of the NAF can vary in the sign on δ.

  5. 5.

    The matched filtering can equivalently be replaced by a narrowband filter for frequency-domain processing of random signals or signals with unknown form.

  6. 6.

    Note that because this is based on the CRLB, the achieved estimation performance will vary unless the estimator is efficient and therefore meets the bound.

  7. 7.

    Acknowledgement: NURC Clutter JRP [57] with gratitude to Dr. P. Nielsen (scientist in charge, Clutter 2007 Experiment).

  8. 8.

    This is because a gamma random variable with shape parameter α and scale β has the same distribution as the sum of α independent exponential random variables with mean β.

  9. 9.

    The trace of a matrix is the sum of the diagonal elements.

References

  1. G. Turi,. An introduction to matched filters. IRE Trans. Inf. Theory 6(3), 311–329 (1960)

    Article  MathSciNet  Google Scholar 

  2. R.N. McDonough, A.D. Whalen, Detection of Signals in Noise, 2nd edn. (Academic Press, San Diego, 1995)

    Google Scholar 

  3. S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall PTR, 1998)

    Google Scholar 

  4. L.L. Scharf, Statistical Signal Processing (Addison-Wesley, Reading, MA, 1991)

    MATH  Google Scholar 

  5. S.A. Kassam, Signal Detection in Non-Gaussian Noise (Springer, New York, 1988)

    Book  Google Scholar 

  6. N. Mukhopadhyay, Probability and Statistical Inference (Marcel Dekker, New York, NY, 2000)

    MATH  Google Scholar 

  7. E.L. Lehmann, J.P. Romano, Testing Statistical Hypotheses, 3rd edn. (Springer, New York, 2005)

    MATH  Google Scholar 

  8. C.W. Helstrom, Elements of Signal Detection and Estimation (Prentice Hall, Englewood Cliffs, NJ, 1995)

    MATH  Google Scholar 

  9. M.A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, New York, 2005)

    Google Scholar 

  10. P.Z. Peebles, Jr., Radar Principles (Wiley, New York, 1998)

    Google Scholar 

  11. D.W. Ricker, Echo Signal Processing (Kluwer Academic, Boston, MA, 2003)

    Book  Google Scholar 

  12. R.O. Nielsen, Sonar Signal Processing (Artech House, Norwood, MA, 1991)

    Google Scholar 

  13. H.L. Van Trees, Detection, Estimation, and Modulation Theory: Part III (Wiley, New York, 1971)

    MATH  Google Scholar 

  14. P.M. Woodward, Probability and Information Theory, with Applications to Radar (Pergamon Press, New York, 1964)

    MATH  Google Scholar 

  15. A.W. Rihaczek, Delay-Doppler ambiguity function for wideband signals. IEEE Trans. Aerosp. Electron. Syst. AES-3(4), 705–711 (1967)

    Article  Google Scholar 

  16. A.W. Rihaczek, Principles of High Resolution Radar (McGraw-Hill, New York, 1969)

    MATH  Google Scholar 

  17. D.W. Ricker, The Doppler sensitivity of large TW phase modulated waveforms. IEEE Trans. Signal Process. 40(10), 2406–2413 (1992)

    Article  Google Scholar 

  18. N. Levanon, E. Mozeson, Radar Signals (Wiley-Interscience, 2004)

    Book  Google Scholar 

  19. S.M. Kay, Modern Spectral Estimation Theory and Application (Prentice Hall, Englewood Cliffs, NJ, 1988)

    MATH  Google Scholar 

  20. W.J. Albersheim, A closed-form approximation to Robertson’s detection characteristics. Proc. IEEE 69(7), 839 (1981)

    Article  Google Scholar 

  21. H. Hmam, SNR calculation procedure for target types 0, 1, 2, 3. IEEE Trans. Aerosp. Electron. Syst. 41(3), 1091–1096 (2005)

    Article  Google Scholar 

  22. K. Oldham, J. Myland, J. Spanier, An Atlas of Functions, 2nd edn. (Springer Science, New York, 2009)

    Book  Google Scholar 

  23. I.S. Gradshteyn, I.M. Ryzhik, in Table of Integrals, Series, and Products, 8th edn., ed. by D. Zwillinger (Elsevier Academic Press, Waltham, MA, 2015)

    Google Scholar 

  24. T. Kailath, Linear Systems (Prentice Hall, Englewood Cliffs, NJ, 1980)

    MATH  Google Scholar 

  25. A.B. Carlson, Communication Systems (McGraw-Hill, New York, 1986)

    Google Scholar 

  26. S. Haykin, Adaptive Filter Theory, 3rd edn. (Prentice Hall, Englewood Cliffs, NJ, 1996)

    MATH  Google Scholar 

  27. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, Boston, 1991)

    MATH  Google Scholar 

  28. J.V. DiFranco, W.L. Rubin, Radar Detection (Artech House, Dedham, MA, 1980)

    Google Scholar 

  29. D. Halliday, R. Resnick, Fundamentals of Physics (Wiley, New York, 1981)

    MATH  Google Scholar 

  30. E.J. Kelly, R.P. Wishner, Matched-filter theory for high-velocity accelerating targets. IEEE Trans. Mil. Electron. Mil-9, 56–69 (1965)

    Article  Google Scholar 

  31. Z. Lin, Wideband ambiguity function of broadband signals. J. Acoust. Soc. Am. 83(6), 2108–2116 (1988)

    Article  Google Scholar 

  32. D.M. Russo, C.L. Bartberger, Ambiguity diagram for linear FM sonar. J. Acoust. Soc. Am. 38(2), 183–190 (1965)

    Article  Google Scholar 

  33. B. Harris, S.A. Kramer, Asymptotic evaluation of the ambiguity functions of high-gain FM matched filter sonar systems. Proc. IEEE 56(12), 2149–2157 (1968)

    Article  Google Scholar 

  34. J.J. Kroszczynski, Pulse compression by means of linear-period modulation. Proc. IEEE 57(7), 1260–1266 (1969)

    Article  Google Scholar 

  35. R.A. Altes, Some invariance properties of the wideband ambiguity function. J. Acoust. Soc. Am. 53(4), 1154–1160 (1973)

    Article  MathSciNet  Google Scholar 

  36. D.A. Swick, A review of wideband ambiguity functions. NRL Report 6994, Naval Research Laboratory, December 1969

    Google Scholar 

  37. L.H. Sibul, E.L. Titlebaum, Volume properties for the wideband ambiguity function. IEEE Trans. Aerosp. Electron. Syst. AES-17(1), 83–87 (1981)

    Article  Google Scholar 

  38. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  39. R.C. Thor, A large time-bandwidth product pulse-compression technique. IRE Trans. Mil. Electron. MIL-6(2), 169–173 (1962)

    Article  Google Scholar 

  40. R.A. Altes, E.L. Titlebaum, Bat signals as optimally Doppler tolerant waveforms. J. Acoust. Soc. Am. 48(4), 1014–1020 (1970)

    Article  Google Scholar 

  41. H.L. Van Trees, Optimum Array Processing (Wiley, New York, 2002)

    Book  Google Scholar 

  42. D.H. Johnson, D.E. Dudgeon, Array Signal Processing: Concepts and Techniques (Prentice Hall, Englewood Cliffs, NJ, 1993)

    MATH  Google Scholar 

  43. S. Haykin (ed.), Array Signal Processing (Prentice Hall, Englewood Cliffs, NJ, 1985)

    MATH  Google Scholar 

  44. B.D. Van Veen, K.M. Buckley, Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  Google Scholar 

  45. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  46. R.J. Urick, Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York, 1983)

    Google Scholar 

  47. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall PTR, 1993)

    Google Scholar 

  48. P. Bello, Joint estimation of delay, Doppler, and Doppler rate. IRE Trans. Inf. Theory 6(3), 330–341 (1960)

    Article  MathSciNet  Google Scholar 

  49. E.J. Kelly, The radar measurement of range, velocity and acceleration. IRE Trans. Mil. Electron. MIL-5(2), 51–57 (1961)

    Article  Google Scholar 

  50. J.P. Ovarlez, Cramer Rao bound computation for velocity estimation in the broad-band case using the Mellin transform, in 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 273–276, 1993

    Google Scholar 

  51. H.L. Van Trees, K.L. Bell (eds.), Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking (IEEE Press Wiley-Interscience, 2007)

    Google Scholar 

  52. S.A. Kramer, Doppler and acceleration tolerances of high-gain, wideband linear FM correlation sonars. Proc. IEEE 55(5), 627–636 (1967)

    Article  Google Scholar 

  53. P. Swerling, Parameter estimation for waveforms in additive Gaussian noise. J. Soc. Ind. Appl. Math. 7(2), 152–166 (1959)

    Article  MathSciNet  Google Scholar 

  54. E.W. Barankin, Locally best unbiased estimates. Ann. Math. Stat. 20(4), 447–501 (1949)

    Article  MathSciNet  Google Scholar 

  55. J. Ziv, M. Zakai, Some lower bounds on signal parameter estimation. IEEE Trans. Inf. Theory 15(3), 386–391 (1969)

    Article  MathSciNet  Google Scholar 

  56. L. Cohen, Time-Frequency Analysis (Prentice Hall PTR, Englewood Cliffs, NJ, 1995)

    Google Scholar 

  57. Acknowledgement: These data were made possible by funding from the Office of Naval Research (Codes 321US and 322OA) and the CLUTTER Joint Research Project (JRP), including as Participants the NATO Undersea Research Centre (NURC), Pennsylvania State University - ARL-PSU (USA), Defence Research and Development Canada - DRDC-A (CAN), and the Naval Research Laboratory - NRL (USA). Scientist in charge: Dr. P. Nielsen

    Google Scholar 

  58. C.H. Harrison, Closed-form expressions for ocean reverberation and signal excess with mode stripping and Lambert’s law. J. Acoust. Soc. Am. 114(5), 2744–2756 (2003)

    Article  Google Scholar 

  59. A.H. Nuttall, A.F. Magaraci, Signal-to-noise ratios required for short-term narrowband detection of Gaussian processes. Tech. Rpt. 4417, Naval Underwater Systems Center, Newport, RI, October 1972

    Google Scholar 

  60. D.A. Abraham, Performance analysis of constant-false-alarm-rate detectors using characteristic functions. IEEE J. Ocean. Eng. (2017). https://doi.org/10.1109/JOE.2017.2771878

    Google Scholar 

  61. N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd edn. (Wiley, New York, 1995)

    Google Scholar 

  62. V.G. Hansen, H.R. Ward, Detection performance of the cell averaging LOG/CFAR receiver. IEEE Trans. Aerosp. Electron. Syst. AES-8(5), 648–652 (1972)

    Article  Google Scholar 

  63. P.P. Gandhi, S.A. Kassam, Analysis of CFAR processors in nonhomogenous background. IEEE Trans. Aerosp. Electron. Syst. 24(4), 427–445 (1988)

    Article  Google Scholar 

  64. H.A. David, H.N. Nagaraja, Order Statistics, 3rd edn. (Wiley, Hoboken, NJ, 2003)

    Book  Google Scholar 

  65. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover Publications, New York, 1972)

    MATH  Google Scholar 

  66. H. Rohling, Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. AES-19(4), 608–621 (1983)

    Article  Google Scholar 

  67. H. Cramér, Random Variables and Probability Distributions. Number 36 in Cambridge Tracts in Mathematics and Mathematical Physics (Cambridge University Press, Cambridge, 1937)

    Google Scholar 

  68. H.L. Van Trees, Optimum signal design and processing for reverberation-limited environments. IEEE Trans. Mil. Electron. 9(3), 212–229 (1965)

    Article  Google Scholar 

  69. T. Arase, E.M. Arase, Deep-sea ambient-noise statistics. J. Acoust. Soc. Am. 44(6), 1679–1684 (1968)

    Article  Google Scholar 

  70. D.R. Morgan, Two-dimensional normalization techniques. IEEE J. Ocean. Eng. 12(1), 130–142 (1987)

    Article  Google Scholar 

  71. D.E. Weston, Correlation loss in echo ranging. J. Acoust. Soc. Am. 37(1), 119–124 (1965)

    Article  Google Scholar 

  72. S.M. Garber, High resolution sonar signals in a multipath environment. IEEE Trans. Aerosp. Electron. Syst. AES-2(6), 431–440 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix 8.A: Example MATLAB® Code for a Doppler Filter Bank

Appendix 8.A: Example MATLAB® Code for a Doppler Filter Bank

The following MATLAB® code implements a Doppler filter bank using fast Fourier transforms (FFTs) as described in Sect. 8.7.1.4. It is assumed that the data have been basebanded and decimated to a band appropriate to the radial velocities of interest. In producing the filter bank, a 50% overlap in time has been implemented and zero-padding of the FFT has been used to interpolate in frequency, which produces correlated Doppler channels. The response of the filter bank is converted to radial velocity assuming a monostatic active sonar geometry. The sample signal generated includes reverberation and an echo near 30 s with approximately 10-kn radial velocity.

% Setup for Doppler filter bank Ts=60;     % Pulse repetition period (s) Tp=1;      % Pulse duration (s) fc=1500;   % Frequency of pulse fs=40;     % Sampling frequency (Hz) cwkn=2916; % Speed of sound (kn) %--------------------------------------------------------- % Generate sample complex-envelope data Nx=round(Ts∗fs); tx=(0:Nx-1)'/fs; x=randn(Nx,2)∗[1;1j]/sqrt(2)+5./sqrt(1+tx)...   +2∗exp(1j∗2∗pi∗10∗tx).∗(abs(tx-Tp/2-30)<Tp/2); %--------------------------------------------------------- % Number of samples in pulse duration N=round(Tp∗fs); % FFT size (increase the '1' to interpolate more in frequency) Nfft=2ˆ(nextpow2(N)+1); % Number of FFTs without overlapping Nt=floor((length(x)-N/2)/N); % Pulse shading vector & matrix a=tukeywin(N,0.1); A=a∗ones(1,Nt); % FFTs for non-overlapped windows Y1=fftshift(fft(A.∗reshape(x(1:Nt∗N),N,Nt),Nfft),1); % FFTs for 50% overlapping Y2=fftshift(fft(A.∗reshape(x(round(N/2)...    +(1:Nt∗N)),N,Nt),Nfft),1); % Combine into one matrix Y=10∗log10(abs(reshape([Y1;Y2],Nfft,2∗Nt)).ˆ2)'; % Velocity and time vectors for plotting vkn=[((Nfft/2):(Nfft-1))-Nfft 0:(Nfft/2-1)]'∗...      fs∗cwkn/(2∗fc∗Nfft); ts=(0:size(Y,2)-1)∗(N/2)/fs; %--------------------------------------------------------- % Plot normalized intensity in decibels figure(2); clf; imagesc(vkn,ts,Y-median(Y(:))); set(gca,'YDir','normal'); set(gca,'TickDir','out'); shading flat xlabel('Radial velocity (kn)'); ylabel('Time (s)'); caxis([-5 25]); colorbar;

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abraham, D.A. (2019). Detecting Signals with Known Form: Matched Filters. In: Underwater Acoustic Signal Processing. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-92983-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92983-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92981-1

  • Online ISBN: 978-3-319-92983-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics