Indirect Associations Between Lamprophyres and Gold-Copper Deposits

  • Daniel Müller
  • David I. Groves
Part of the Mineral Resource Reviews book series (MIRERE)


This Chapter describes the spatial association between lamprophyres and orogenic gold deposits worldwide. The spatial relationships between lamprophyric magmatism and orogenic gold deposits of the Archaean and Proterozoic provinces in the Northern Territory, Australia, the Eastern Goldfields, Yilgarn Craton, Western Australia, and in the Superior Province, Canada, are discussed in detail. Although lamprophyres are spatially and temporally related to gold mineralization in all those terranes, the association is interpreted to be an indirect one. Both lamprophyres and gold mineralization occur along major faults and shear zones which controlled their emplacement. Elevated Au contents in some Proterozoic lamprophyres from the vicinity of lode-gold deposites are decoupled from Cu and Pd peaks in primitive mantle-normalized distribution plots, suggesting that the anomalous Au contents are secondary features. The contamination could have been caused during emplacement en route to the surface or by hydrothermal fluids that overprinted the dykes after their emplacement.


  1. Aghazadeh M, Prelevic D, Badrzadeh Z, Braschi E, van den Bogaard P, Conticelli S (2015) Geochemistry Sr-Nd-Pb isotopes and geochronology of amphibole- and mica-bearing lamprophyres in northwestern Iran: implications for mantle wedge heterogeneity in a paleo-subduction zone. Lithos 217:352–369CrossRefGoogle Scholar
  2. Ahmad M, Wygralak AS, Ferenczi PA, Bajwah ZU (1993) Explanatory notes and mineral deposit data sheets, 1:250,000 metallogenic map series, Department of Mines and Energy, Northern Territory Geological SurveyGoogle Scholar
  3. Asan K, Ertürk MA (2013) First evidence of lamprophyric magmatism from the Konya region, Turkey: a genetic link to high-K volcanism. Acta Geol Sin 87:1617–1629CrossRefGoogle Scholar
  4. Ashley PM, Craw D (2004) Structural controls on hydrothermal alteration and gold-antimony mineralization in the Hillgrove area, NSW, Australia. Miner Deposita 39:223–239CrossRefGoogle Scholar
  5. Ashley PM, Cook NDJ, Hill RL, Kent AJR (1994) Shoshonitic lamprophyre dykes and their relation to mesothermal Au-Sb veins at Hillgrove, New South Wales, Australia. Lithos 32:249–272CrossRefGoogle Scholar
  6. Bajwah ZU (2007) Annual exploration report EL23516 for period ending 3rd April 2007, Great Northern Territory. GBS Gold Australia, Unpublished Company Report PC/BJV/07-17, p 18Google Scholar
  7. Barley ME, Groves DI (1990) Deciphering the tectonic evolution of Archaean greenstone belts: the importance of contrasting histories to the distribution of mineralization in the Yilgarn Craton, Western Australia. Precambr Res 46:3–20CrossRefGoogle Scholar
  8. Barley ME, Groves DI (1992) Supercontinent cycles and the distribution of metal deposits through time. Geol 20:291–294CrossRefGoogle Scholar
  9. Barley ME, Eisenlohr BN, Groves DI, Perring CS, Vearncombe JR (1989) Late Archaean convergent margin tectonics and gold mineralization: a new look at the Norseman-Wiluna Belt, Western Australia. Geol 17:826–829CrossRefGoogle Scholar
  10. Belousov I, Large RR, Meffre S, Danyushevsky LV, Steadman J, Beardsmore T (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: implications for gold and copper exploration. Ore Geol Rev 79:474–499CrossRefGoogle Scholar
  11. Betsi TB, Lentz D (2011) Petrochemistry of subvolcanic dyke swarms associated with the Golden Revenue Au–Cu and the Stoddart Mo–Cu ± W mineralizations (Dawson Range, Yukon Territory, Canada) and implications for ore genesis. Ore Geol Rev 39:134–163CrossRefGoogle Scholar
  12. Blichert-Toft J, Arndt NT, Ludden JN (1996) Precambrian alkaline magmatism. Lithos 37:97–111CrossRefGoogle Scholar
  13. Brügmann GE, Arndt NT, Hofmann AW, Tobschall HJ (1987) Noble metal abundances in komatiite suites from Alexo, Ontario, and Gorgona Island, Colombia. Geochim Cosmochim Acta 51:2159–2169CrossRefGoogle Scholar
  14. Bucholz CE, Jagoutz O, Schmidt MW, Sambuu O (2014) Fractional crystallization of high-K arc magmas: biotite-versus amphibole-dominated fractionation series in the Dariv Igneous Complex, western Mongolia. Contrib Miner Petrol 168:1072–1100CrossRefGoogle Scholar
  15. Burrows DR, Spooner ETC (1989) Relationships between Archaean gold quartz vein-shear zone mineralization and igneous intrusions in the Val d’Or and Timmins areas, Abitibi Subprovince, Canada. In: Keays RR, Ramsay WRH, Groves DI (eds) The geology of gold deposits: the perspective in 1988. Economic Geology Monograph, vol 6, p 424–444Google Scholar
  16. Campbell IH, Stepanov AS, Liang HY, Allen CM, Norman MD, Zhang YQ, Xie YW (2014) The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib Miner Petrol 167:983–1005CrossRefGoogle Scholar
  17. Card KD, Ciesielski A (1986) Subdivisions of the superior province of the Canadian shield. J Geol Assoc Can 13:5–13Google Scholar
  18. Chen Y, Yao S, Pan Y (2014) Geochemistry of lamprophyres at the Daping gold deposit, Yunnan Province, China: constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau. J Asian Earth Sci 93:129–145Google Scholar
  19. Choi E, Fiorentini M, Giuliani A, Kemp A, Pirajno F, Foley S (2017) Mineralogy, geochemistry, and petrogenesis of Paleoproterozoic alkaline magmas in the Yilgarn Craton, Western Australia. In: 11th International Kimberlite conference Extended abstract no. 11IKC-Asian, p 3Google Scholar
  20. Colvine AC (1989) An empirical model for the formation of Arcaean gold deposits: products of final cratonization of the Superior Province, Canada. In: Keays RR, Ramsay WRH, Groves DI (eds) The geology of gold deposits: the perspective in 1988, economic geology monograph, vol 6, pp 37–53Google Scholar
  21. Cornelius M, Singh B, Meyer S, Smith RE, Cornelius AJ (2005) Laterite geochemistry applied to diamond exploration in the Yilgarn Craton, Western Australia. geochemistry: exploration. Environ Anal 5:291–310Google Scholar
  22. Deng J, Wang Q, Li G, Zhao Y (2015) Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geol Rev 65:42–54CrossRefGoogle Scholar
  23. Duggan MB, Jaques AL (1996) Mineralogy and geochemistry of Proterozoic shoshonitic lamprophyres from the Tennant Creek Inlier, Northern Territory. Aust J Earth Sci 43:269–278CrossRefGoogle Scholar
  24. Dupuis NE, Braid JA, Murphy JB, Shail RK, Archibald DA, Nance RD (2016a) 40Ar/39Ar phlogopite geochronology of lamprophyre dykes in Cornwall, UK: new age constraints on Early Permian post-collisional magmatism in the Rhenohercynian Zone, SW England. J Geol Soc Lond 172:566–575CrossRefGoogle Scholar
  25. Dupuis NE, Murphy JB, Braid JA, Shail RK, Nance RD (2016b) Mantle evolution in the Variscides of SW England: geochemical and isotopic constraints from mafic rocks. Tectonophysics 681:353–363CrossRefGoogle Scholar
  26. Fu L, Wei J, Kusky TM, Chen H, Tan J, Li Y, Kong L, Jiang Y (2012) Triassic shoshonitic dykes from the northern North China craton: petrogenesis and geodynamic significance. Geol Mag 149:39–55CrossRefGoogle Scholar
  27. Gan T, Huang Z (2017) Platinum-group element and Re-Os geochemistry of lamprophyres in the Zhenyuan gold deposit, Yunnan Province, China: implications for petrogenesis and mantle evolution. Lithos 283:228–239CrossRefGoogle Scholar
  28. Gee RD, Baxter JL, Wilde SA, Williams IR (1981) Crustal development in the Archaean Yilgarn Block, Western Australia. In: Glover JE, Groves DI (eds) Archaean geology: second international symposium, Perth, 1980, vol 7. Geological Society of Australia Special Publication pp 43–56Google Scholar
  29. Giri RK, Pandit D, Rao NVC (2018) Cobaltoan pyrite in a lamprophyre from the Sidhi gneissic complex, Mahakoshal belt, central India. J Geol Soc India 91:5–8CrossRefGoogle Scholar
  30. Graham SD, Holwell DA, McDonald I, Jenkin GRT, Hill NJ, Boyce AJ, Smith J, Sangster C (2017) Magnetic Cu-Ni-PGE-Au sulfide mineralization in alkaline igneous systems: an example from the Sron Garbh intrusion, Tyndrum, Scotland. Ore Geol Rev 80:961–984CrossRefGoogle Scholar
  31. Groves DI (1982) The Archaean and earliest Proterozoic evolution and metallogeny of Australia. Revistas Brasil Geociencia 12:135–148Google Scholar
  32. Groves DI (1993) The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Miner Deposita 28:366–374CrossRefGoogle Scholar
  33. Groves DI, Barley ME, Shepherd JM (1994) Geology and mineralization of Western Australia. In: Dentith MC, Frankcombe KF, Ho SE, Shepherd JM, Groves DI, Trench A (eds) Geophysical Signatures of Western Australian Mineral Deposits. Geology and Geophysics Department & UWA Extension, vol 26. University of Western Australia, Publication pp 3–28Google Scholar
  34. Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27CrossRefGoogle Scholar
  35. Groves DI, Goldfarb RJ, Knox-Robinson CM, Ojala J, Gardoll S, Yun GY, Holyland P (2000) Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geo Rev 17:1–38CrossRefGoogle Scholar
  36. Groves DI, Santosh M, Goldfarb RJ, Zhang L (2018) Structural geometry of orogenic gold deposits: implications for exploration of world-class and giant deposits. Geoscience Frontiers (in press)Google Scholar
  37. Guo F, Fan W, Wang Y, Zhang M (2004) Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos 78:291–305CrossRefGoogle Scholar
  38. Hagemann SG, Groves DI, Ridley JR, Vearncombe JR (1992) The Archaean lode gold deposits at Wiluna, Western Australia: high-level brittle-style mineralization in a strike-slip regime. Econ Geol 87:1022–1053CrossRefGoogle Scholar
  39. Hallberg JA (1985) Geology and mineral deposits of the Leonora-Laverton area, northeastern Yilgarn Block, Western Australia. Hesperian Press, Perth, p 89Google Scholar
  40. Hart CJR, McCoy D, Goldfarb RJ, Smith M, Roberts P, Hulstein R, Bakke AA, Bundtzen TK (2002) Geology, exploration and discovery in the Tintina gold province, Alaska and Yukon. Economic Geol Spec Publ 9:241–274Google Scholar
  41. Hart CJR, Mair JL, Goldfarb RJ, Groves DI (2004) Source and redox controls on metallogenic variations in ore systems, Tombstone-Tungsten Belt, Yukon, Canada. Trans Royal Soc Edinburgh Earth Sci 95:339–356Google Scholar
  42. He WY, Mo X, Yang LQ, Xing YL, Dong GC, Yang Z, Gao X, Bao XS (2016) Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: implications for magma mixing/mingling and mineralization. Gondwana Res 40:230–248CrossRefGoogle Scholar
  43. Heidari SM, Daliran F, Paquette JL, Gasquet D (2015) Geology, timing, and genesis of the high sulphidation Au (–Cu) deposit of Touzlar, NW Iran. Ore Geol Rev 65:460–486CrossRefGoogle Scholar
  44. Huang Q, Kamenetsky VS, Ehrig K, McPhie J, Kamenetsky M, Cross K, Meffre S, Agangi A, Chambefort I, Direen NG, Maas R, Apukhtina O (2016) Olivine-phyric basalt in the Mesoproterozoic Gawler silicic large igneous province, South Australia: examples at the olympic dam iron oxide Cu–U–Au–Ag deposit and other localities. Precambr Res 281:185–199CrossRefGoogle Scholar
  45. Huang Q, Kamenetsky VS, Ehrig K, McPhie J, Kamenetsky M, Apukhtina O, Chambefort I (2017) Effects of hydrothermal alteration on mafic lithologies at the Olympic Dam Cu–U–Au–Ag deposit. Precambr Res 292:305–322CrossRefGoogle Scholar
  46. Hutchison MT (2013) Diamond exploration and regional prospectivity of the Northern Territory of Australia. In: Pearson D et al (eds) Proceedings of 10th international kimberlite conference. Springer Verlag, New Delhi pp 257–280CrossRefGoogle Scholar
  47. Imaoka T, Kawabata H, Nagashima M, Nakashima K, Kamei A, Yagi K, Itaya T, Kiji M (2017) Petrogenesis of an early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: implications for the generation of high-Nb basalt magmas in subduction zones. Lithos 291:18–33CrossRefGoogle Scholar
  48. Jayabalan M, Udayasankar S, Thiagarajan J, Sasikumar S, Nandhakumar E, Rajakumaran M, Manikandan M, Nagamani S (2015) Petrology and geochemistry of lamprophyre rock types of Salem, Dharmapuri, Krishnagiri and Namakkal districts, Tamil Nadu. J Appl Geochem 17:213–235Google Scholar
  49. Jensen LS (1978) Larder Lake synoptic mapping project, districts of Cochrane and Timiskaming. Ontario Geol Surv Miscellaneous Pap 94:64–69Google Scholar
  50. Johnson JP (1993) The geochronology and radiogenic isotope systematics of the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Unpupl PhD Thesis, Australian National University, Canberra, 251 ppGoogle Scholar
  51. Kargin AV, Golubevab YY, Demonterovac EI, Koval’chuka EV (2017) Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the northern Anabar Province, Yakutia, Russia. Petrol 25:535–565CrossRefGoogle Scholar
  52. Karsli O, Dokuz A, Kaliwoda M, Uysal I, Aydin F, Kandemir R, Fehr KT (2014) Geochemical fingerprints of Late Triassic calc-alkaline lamrophyres from the Eastern Pontides, NE Turkey: a key to understanding lamprophyre formation in a subduction-related environment. Lithos 197:181–197CrossRefGoogle Scholar
  53. Kent AJR, Hagemann SG (1996) Constraints on the timing of lode-gold mineralization in the Wiluna greenstone belt, Yilgarn Craton, Western Australia. Aust J Earth Sci 43:573–588CrossRefGoogle Scholar
  54. Kenworthy S, Hagemann SG (2005) Decoupled lamprophyric magmatism and gold mineralization at the Archean Darlot lode gold deposit, Western Australia. In: Mineral deposit research: meeting the global challenge, Springer Verlag Berlin, pp 987–990CrossRefGoogle Scholar
  55. Kwelwa SD, Sanislav IV, Dirks PHGM, Blenkinsop T, Kolling SL (2018) Zircon U-Pb ages and Hf isotope data from the Kukuluma terrain of the Geita greenstone belt, Tansania craton: implications for stratigraphy, crustal growth and timing of gold mineralization. J Afr Earth Sci 139:38–54CrossRefGoogle Scholar
  56. Lanjewar S, Randive K (2018) Lamprophyres from the Harohalli dyke swarm in the Halaguru and Mysore areas, southern India: implications for back-arc basin magmatism. J Afr Earth Sci 157:329–347Google Scholar
  57. Leat PT, Thompson RN, Morrison MA, Hendry GL, Dickin AP (1988) Silicic magma derived by fractional-crystallization from Miocene minette, Elkhead Mountain, Colorado. Mineral Mag 52:577–586CrossRefGoogle Scholar
  58. Lu YJ, Kerrich R, McCuaig TC, Li ZX, Hart CJR, Cawood PA, Hou ZQ, Bagas L, Cliff J, Belousova EA, Tang S (2013a) Geochemical, Sr–Nd–Pb, and zircon Hf–O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: petrogenesis and tectonic implications. J Petrol 54:1309–1348CrossRefGoogle Scholar
  59. Lu YJ, Kerrich R, Kemp AIS, McCuaig TC, Hou ZQ, Hart CJR, Li ZX, Cawood PA, Bagas L, Yang ZM, Cliff J, Belousova EA, Jourdan F, Evans NJ (2013b) Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China: compositional characteristics, sources, and implications for continental collision metallogeny. Econ Geol 108:1541–1576CrossRefGoogle Scholar
  60. Lu YJ, McCuaig TC, Li ZX, Jourdan F, Hart CJR, Hou ZQ, Tang S (2015) Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: mantle source and tectonic implications. Lithos 233:139–161CrossRefGoogle Scholar
  61. Mair JL, Farmer GL, Groves DI, Hart CJR, Goldfarb RJ (2011) Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems. Econ Geol 106:451–480CrossRefGoogle Scholar
  62. Maughan DT, Keith JD, Christiansen EH, Pulsipher T, Hattori K, Evans NJ (2002) Contributions from mafic alkaline magmas to the Bingham porphyry Cu–Au–Mo deposit, Utah, USA. Miner Deposita 37:14–37CrossRefGoogle Scholar
  63. Mathieu L, Bouchard É, Guay F, Liénard A, Pilote P, Goutier J (2018) Criteria for the recognition of Archean calc-alkaline lamprophyres: examples from the Abitibi Subprovince. Can J Earth Sci 55:188–205CrossRefGoogle Scholar
  64. McDonald R, Rock NMS, Rundle CC, Russell OJ (1986) Relationships between late Caledonian lamprophyric and acidic magmas in a differentiated dyke, SW Scotland. Mineral Mag 50:547–557CrossRefGoogle Scholar
  65. McNaughton NJ, Mueller AG, Groves DI (2005) The age of the giant Golden Mile deposit, Kalgoorlie, Western Australia: ion-microprobe zircon and monazite U-Pb geochronology of a synmineralization lamprophyre dyke. Econ Geol 100:1427–1440CrossRefGoogle Scholar
  66. Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13:97–108CrossRefGoogle Scholar
  67. Mortensen JK (1993) U-Pb geochronology of the eastern Abitibi Subprovince, Part 2: Noranda—Kirkland Lake area. Can J Earth Sci 30:29–41CrossRefGoogle Scholar
  68. Müller D (1993) Shoshonites and potassic igneous rocks: indicators for tectonic setting and mineralization potential of modern and ancient terranes. Unpubl. PhD Thesis, The University of Western Australia, PerthGoogle Scholar
  69. Müller D, Stumpfl EF, Taylor WR (1992a) Shoshonitic and alkaline lamprophyres with elevated Au and PGE concentrations from the Kreuzeck Mountains, Eastern Alps, Austria. Miner Petrol 46:23–42CrossRefGoogle Scholar
  70. Müller D, Rock NMS, Groves DI (1992b) Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: a pilot study. Miner Petrol 46:259–289CrossRefGoogle Scholar
  71. Müller D, Morris BJ, Farrand MG (1993) Potassic alkaline lamprophyres with affinities to lamproites from the Karinya Syncline, South Australia. Lithos 30:123–137CrossRefGoogle Scholar
  72. Myers JS (1993) Precambrian history of the Western Australian Craton and adjacent orogens. Annu Rev Earth Planet Sci 21:453–485CrossRefGoogle Scholar
  73. Nasir S (2016) Petrology of Late Jurassic allochthonous ultramafic lamprophyres within the Batain Nappes, northeastern Oman. Int Geol Rev 58:913–928CrossRefGoogle Scholar
  74. Needham RS, De Ross GJ (1990) Pine Creek Inlier—regional geology and mineralization. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 14. Australasian Institute of Mining and Metallurgy, Parville, Monograph pp 727–737Google Scholar
  75. Needham RS, Roarty MJ (1980) An overview of metallic mineralization in the Pine Creek Geosyncline. In: Ferguson J, Goleby AB (eds) Proceedings of international uranium symposium on the Pine Creek Geosyncline, Sydney, 1979. International Atomic Energy Agency, Vienna pp 157–174Google Scholar
  76. Needham RS, Stuart-Smith PG, Page RW (1988) Tectonic evolution of the Pine Creek Inlier, Northern territory. Precambr Res 41:543–564CrossRefGoogle Scholar
  77. Němec M, Zachariáš J (2018) The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation. Miner Deposita 53:225–244CrossRefGoogle Scholar
  78. Nicholson PM, Eupene GS (1990) Gold deposits of the Pine Creek Inlier. In: Hughes FE (ed) Geology of the mineral resources of Australia and papua new guinea, vol 14. Australasian Institute of Mining and Metallurgy, Parkville, Monograph pp 739–742Google Scholar
  79. Niu X, Chen B, Feng G, Liu F, Yang J (2017) Origin of lamprophyres from the northern margin of the North China Craton: implications for mantle metasomatism. J Geol Soc London 174:353–364CrossRefGoogle Scholar
  80. Orozco-Garza A, Dostal J, Keppie JD, Paz-Moreno FA (2013) Mid-Tertiary (25–21 Ma) lamprophyres in NW Mexico derived from subduction-modified subcontinental lithospheric mantle in an extensional backarc environment following steepening of the Benioff zone. Tectonophysics 590:59–71CrossRefGoogle Scholar
  81. Pandey A, Rao NVC, Pandit D, Pankaj P, Pandey R, Sahoo S, Kumar A (2017a) Subduction—tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precambr Res 298:235–251CrossRefGoogle Scholar
  82. Pandey A, Rao NVC, Chakrabarti R, Pandit D, Pankaj P, Kumar A, Sahoo S (2017b) Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source. Lithos 293:218–233CrossRefGoogle Scholar
  83. Pandey R, Rao NVC, Dhote P, Pandit D, Choudhary AK, Sahoo S, Lehmann B (2018) Rift associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutch, northwestern India: tectonomagmatic implications. Geoscience Frontiers (in press)Google Scholar
  84. Panina LI, Rokosova EY, Isakova AT, Tolstov AV (2016) Lamprophyres of the Tomtor Massif: a result of mixing between potassic and sodic alkaline mafic magmas. Petrol 24:608–626CrossRefGoogle Scholar
  85. Panina LI, Rokosova EY, Isakova AT, Tolstov AV (2017) Mineral composition of alkaline lamprophyres of the Tomtor massif as reflection of their genesis. Russ Geol Geophys 58:891–906CrossRefGoogle Scholar
  86. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548Google Scholar
  87. Pearce JA, Cann JR (1973) Tectonic setting of basaltic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  88. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonon area, northern Turkey. Contrib Miner Petrol 58:63–81CrossRefGoogle Scholar
  89. Pe-Piper G, Piper DJW, Papoutsa A (2018) Mid Carboniferous lamprophyres, Cobequid fault zone, eastern Canada, linked to sodic granites, voluminous gabbro, and albitization. Lithos 299:316–331CrossRefGoogle Scholar
  90. Perring CS (1988) Petrogenesis of the lamprophyre-“porphyry” suite from Kambalda, Western Australia. In: Ho SE, Groves DI (eds) Advances in Understanding Precambrian Gold Deposits Volume II. Geology Department & University Extension vol 12, The University of Western Australia, Perth, Publication pp 277–294Google Scholar
  91. Perring CS, Barley ME, Cassidy KF, Groves DI, McNaughton NJ, Rock NMS, Bettenay LF, Golding SD, Hallberg JA (1989) The association of linear orogenic belts, mantle-crustal magmatism and Archaean gold mineralization in the Eastern Yilgarn Block of Western Australia. In: Keays RR, Ramsay WRH, Groves DI (eds) The geology of gold deposits: the perspective in 1988 vol 6. Economic Geology Monograph pp 571–584Google Scholar
  92. Plà Cid J, Campos CS, Nardi LVS, Florisbal L (2012) Petrology of Gameleira potassic lamprophyres, São Francisco Craton. Anais de Acad Bras de Ciências 84:377–398CrossRefGoogle Scholar
  93. Porter JP, Schroeder K, Austin G (2012) Geology of the Bingham Canyon porphyry Cu–Mo–Au deposit, Utah. Econ Geol Spec Publ 16:127–146Google Scholar
  94. Rabbia OM, Hernández LB, French DH, King RW, Ayers JC (2009) The El Teniente porphyry Cu–Mo deposit from a hydrothermal rutile perspective. Miner Deposita 44:849–866CrossRefGoogle Scholar
  95. Rasmussen B, Fletcher IR, McNaughton NJ (2001) Dating low-grade metamorphic events by SHRIMP U–Pb analysis of monazite in shales. Geol 29:963–966CrossRefGoogle Scholar
  96. Rasmussen B, Sheppard S, Fletcher I (2006) Testing ore deposit models using in situ U–Pb geochronology of hydrothermal monazite: paleoproterozoic gold mineralization in Northern Territory. Geol 34:77–80CrossRefGoogle Scholar
  97. Rios DC, Conceição H, Davis DW, Plá Cid J, Rosa MLS, Macambira MJB, McReath I, Marinho MM, Davis WJ (2007) Paleoproterozoic potassic-ultrapotassic magmatism: Morro de Afonso syenite pluton, Bahia, Brazil. Precambr Res 154:1–30CrossRefGoogle Scholar
  98. Robert F, Brommecker R, Bourne BT, Dobak PJ, McEwan CJ, Rowe RR, Zhou X (2007) Models and exploration methods for major gold deposit types. In: Milkereit B (Ed.), Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Abstracts Volume pp 691–711Google Scholar
  99. Rock NMS (1991) Lamprophyres. Blackie, Glasgow, p 285CrossRefGoogle Scholar
  100. Rock NMS, Groves DI (1988a) Do lamprophyres carry gold as well as diamonds? Nat 332:253–255CrossRefGoogle Scholar
  101. Rock NMS, Groves DI (1988b) Can lamprophyres resolve the genetic controversy over mesothermal gold deposits? Geol 16:538–541CrossRefGoogle Scholar
  102. Rock NMS, Groves DI, Ramsay RR (1988a) Lamprophyres: a girl’s best friend? In: Ho SE, Groves DI (eds) Advances in understanding precambrian gold deposits Volume II. Geology Department & University Extension, vol 12. The University of Western Australia Publication pp 295–308Google Scholar
  103. Rock NMS, Hallberg JA, Groves DI, Mather PJ (1988b) Archaean lamprophyres in the goldfields of the Yilgarn Block, Western Australia: new indications of their widespread distribution and significance. In: Ho SE, Groves DI (eds) Advances in Understanding Precambrian Gold Deposits Volume II. Geology Department & University Extension, vol 12. The University of Western Australia Publication pp 245–275Google Scholar
  104. Rock NMS, Groves DI, Perring CS, Golding SD (1989) Gold, lamprophyres, and porphyries: what does their association mean? In: Keays RR, Ramsay WRH, Groves DI (eds) The geology of gold deposits: the perspective in 1988, vol 6. Economic Geology Monograph pp 609–625Google Scholar
  105. Rowins SM, Cameron EM, Lalonde AE, Ernst RE (1993) Petrogenesis of the late Archaean syenitic Murdoch Creek pluton, Kirkland Lake, Ontario: evidence for an extensional tectonic setting. Can Mineral 31:219–244Google Scholar
  106. Sheppard S (1992) An early Proterozoic shoshonitic lamprophyre-granite association and its relationship to the Tom’s Gully gold deposit, Mt. Bundey, Northern Territory, Australia. Unpubl. PhD Thesis, The University of Western Australia, PerthGoogle Scholar
  107. Sheppard S (1995) Hybridization of shoshonitic lamprophyre and calc-alkaline granite magma in the Early Proterozoic Mt. Bundey igneous suite, Northern Territory. Aust J Earth Sci 42:173–185CrossRefGoogle Scholar
  108. Sheppard S, Taylor WR (1992) Barium- and LREE-rich, olivine-mica lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory Australia. Lithos 28:303–325CrossRefGoogle Scholar
  109. Smolonogov S, Marshall B (1993) A genetic model for the Woodcutters Pb–Zn–Ag orebodies, Northern Territory, Australia. Ore Geol Rev 8:65–88CrossRefGoogle Scholar
  110. Solomon M, Groves DI (1994) The Geology and Origin of Australia’s Mineral Deposits, vol 24. Clarendon Press, New York, Oxford Monographs in Geology and Geophysics pp 951Google Scholar
  111. Spooner ETC (1993) Magmatic sulphide/volatile interaction as a mechanism for producing chalcophile element-enriched, Archaean Au-quartz hydrothermal ore fluids. Ore Geol Rev 7:359–379CrossRefGoogle Scholar
  112. Sun X, Lu YJ, McCuaig TC, Zheng YY, Chang HF, Guo F, Xu LJ (2018) Miocene ultrapotassic, high-Mg dioritic and adakite-like rocks from Zhunuo in southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J Petrol (in press)Google Scholar
  113. Štemprok M, Dolejš D, Holub F (2014) Late Variscan calc-alkaline lamprophyres in the Krupka ore district, Eastern Krušnè hory/Erzgebirge: their relationship to Sn–W mineralization. J Geosci 59:41–68CrossRefGoogle Scholar
  114. Stern CR, Skewes MA, Arevalo A (2011) Magmatic evolution of the giant El Teniente Cu-Mo deposit, Central Chile. J Petrol 52:1591–1617CrossRefGoogle Scholar
  115. Stuart-Smith PG, Needham RS, Wallace DA, Roarty MJ (1986) McKinley River, Northern Territory: 1:100,000 geological map commentary. Department of Mines and Energy Northern Territory, DarwinGoogle Scholar
  116. Taylor WR, Rock NMS, Groves DI, Perring CS, Golding SD (1994) Geochemistry of Archaean shoshonitic lamprophyres from the Yilgarn Block, Western Australia: Au abundance and association with gold mineralization. Appl Geochem 9:197–222CrossRefGoogle Scholar
  117. Thébaud N, Sugiono D, LaFlamme C, Miller J, Fisher L, Voute F, Tessalina S, Sonntag I, Fiorentini M (2018) Protracted and polyphased gold mineralization in the Agnew District (Yilgarn Craton, Western Australia). Precambr Res 310:291–304CrossRefGoogle Scholar
  118. Toogood DJ, Hodgson CJ (1985) A structural investigation between Kirkland Lake and Larder Lake gold camps. Ontario Geol Surv Miscellaneous Pap 127:200–205Google Scholar
  119. Tucker DH, Stuart DC, Hone IG, Sampath N (1980) The characteristics and interpretation of regional gravity, magnetic and radiometric surveys in the Pine Creek Geosyncline. In: Ferguson J, Goleby AB (ed) Proceedings of international uranium symposium on the Pine Creek Geosyncline, Sydney, 1979. International Atomic Energy Agency, Vienna pp 101–140Google Scholar
  120. Veter M, Foley SF, Mertz-Kraus R, Groschopf N (2017) Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source. Lithos 293:81–95CrossRefGoogle Scholar
  121. Vielreicher RM, Groves DI, Ridley JR, McNaughton NJ (1994) A replacement origin for the BIF-hosted gold deposit at Mt. Morgans, Yilgarn block Western Australia. Ore Geol Rev 9:325–347CrossRefGoogle Scholar
  122. Vielreicher NM, Groves DI, McNaughton NJ (2016) The giant Kalgoorlie gold field revisited. Geosci Frontiers 7:359–374CrossRefGoogle Scholar
  123. Vielreicher NM, Groves DI, McNaughton NJ, Fletcher I (2015) The timing of gold mineralization across the eastern Yilgarn craton using U–Pb geochronology of hydrothermal phosphate minerals. Miner Deposita 50:391–428CrossRefGoogle Scholar
  124. Wall VJ (1990) Fluids and metamorphism. Unpubl. PhD Thesis, Monash University, MelbourneGoogle Scholar
  125. Wang J, Qi L, Yin A, Xie G (2001) Emplacement age and PGE geochemistry of lamprophyres in the Laowangzhai gold deposit, Yunnan, SW China. Sci China (Series D) 44:146–154CrossRefGoogle Scholar
  126. Witt WK, Ford A, Hanrahan B, Mamuse A (2013) Regional-scale targeting for gold in the Yilgarn craton: part 1 of the Yilgarn Gold Exploration Targeting Atlas. GSWA Report 125Google Scholar
  127. Witt WK, Cassidy K, Lu YJ, Hagemann SG (2018) Syenitic group intrusions of the Archean Kurnalpi Terrane, Yilgarn Craton: hosts to ancient alkali porphyry gold deposits? Ore Geology Reviews 96:262–268CrossRefGoogle Scholar
  128. Worthing MA, Nasir S (2008) Cambro-Ordovician potassic (alkaline) magmatism in Central Oman: petrological and geochemical constraints on petrogenesis. Lithos 106:25–38CrossRefGoogle Scholar
  129. Wyman D (1990) Archaean shoshonitic lamprophyres of the Superior Province, Canada: petrogenesis, geodynamic setting, and implications for lode gold deposits. Unpubl. PhD Thesis, University of Saskatchewan, SaskatoonGoogle Scholar
  130. Wyman D, Kerrich R (1988) Alkaline magmatism, major structures and gold deposits: implications for greenstone belt gold metallogeny. Econ Geol 83:454–461CrossRefGoogle Scholar
  131. Wyman D, Kerrich R (1989a) Archaean shoshonitic lamprophyres associated with Superior Province gold deposits: distribution, tectonic setting, noble metal abundances and significance for gold mineralization. In: Keays RR, Ramsay WRH, Groves DI (eds), The Geology of Gold Deposits: The Perspective in 1988, vol 6. Economic Geology Monograph pp 651–667Google Scholar
  132. Wyman D, Kerrich R (1989b) Archaean lamprophyre dykes of the Superior Province, Canada: distribution, petrology and geochemical characteristics. J Geophys Res 94:4667–4696CrossRefGoogle Scholar
  133. Wyman DA, O’Neill C, Ayer JA (2008) Evidence for modern-style subduction to 3.1 Ga: a plateau–adakite–gold (diamond) association. In: Condie KC, Pease V (Eds) When did plate tectonics begin on planet earth? Geol Soc Am Spec Pap 440:129–148Google Scholar
  134. Wyman DA, Hollings P, Conceição RV (2015) Geochemistry and radiogenic isotope characteristics of xenoliths in Archean diamondiferous lamprophyres: Implications for the Superior Province cratonic keel. Lithos 233:111–130CrossRefGoogle Scholar
  135. Yang ZY, Jiang SY (2018) Diverse lamprophyre origins corresponding to lithospheric thinning: a case study in the Jiurui district of middle-lower Yangtze river belt, South China Craton. Gondwana Res 54:62–80CrossRefGoogle Scholar
  136. Yeats CJ, McNaughton NJ, Ruettger D, Bateman R, Groves DI, Harris JL (1999) Evidence for diachronous Archaean lode-gold mineralization events in the Yilgarn Craton, Western Australia; a SHRIMP U–Pb study of intrusive rocks. Econ Geol 94:1259–1276CrossRefGoogle Scholar
  137. Xiong L, Wei J, Shi W, Fu L, Li H, Zhou H, Chen J, Chen M (2018) Geochronology, petrology and geochemistry of the Mesozoic Dashizhuzi granites and lamprophyre dykes in eastern Hebei—western Liaoning: implications for lithospheric evolution beneath the North China craton. Geological Magazine (in press)Google Scholar
  138. Zhang D, Audetat A (2017) What caused the formation of the giant Bingham Canyon porphyry Cu–Mo–Au deposit? Insights from melt inclusions and magmatic sulfides. Econ Geol 112:221–244CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NDP Exploration Team—Target GenerationQPX ChileLas Condes, SantiagoChile
  2. 2.Department of Geology and Geophysics, Centre for Exploration TargetingThe University of Western AustraliaCrawleyAustralia

Personalised recommendations