Definitions and Nomenclature

  • Daniel Müller
  • David I. Groves
Part of the Mineral Resource Reviews book series (MIRERE)


In the last century, petrologists generated many names for potassic igneous rocks which were either based on their mineralogy or, more commonly for new rock-types, based on a type locality. These different names for essentially similar rocks from different localities led to great confusion in the literature. This Chapter seeks to provide an overview and a classification of those rocks. “Potassic igneous rocks” is used as an umbrella term to describe those rocks which are silica-saturated and more K-rich than typical igneous rocks (i.e. K > Na). The group includes subduction-related high-K calc-alkaline rocks and shoshonites, high-K rocks from within-plate tectonic settings, and hypabyssal high-K rocks such as shoshonitic and alkaline lamprophyres. In this book, ‘adakites’, which are defined by high LILE, low HFSE, and high whole-rock Sr/Y and La/Yb ratios, are considered as part of the group of potassic igneous rocks due to their similar geochemical compositions.


  1. Ahmadian J, Sarjoughian F, Lentz D, Esna-Ashari A, Murata M, Ozawa H (2016) Eocene K-rich adakitic rocks in the Central Iran: implications for evaluating its Cu–Au–Mo metallogenic potential. Ore Geol Rev 72:323–342CrossRefGoogle Scholar
  2. Alirezaei A, Arvin M, Dargahi S (2017) Adakite-like signature of porphyry granitoid stocks in the Meiduk and Parkam porphyry copper deposits, NE of Shahr-e-Babak, Kerman, Iran: constraints on geochemistry. Ore Geol Rev 88:370–383CrossRefGoogle Scholar
  3. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113:213–227CrossRefGoogle Scholar
  4. Bailey DK (1982) Mantle metasomatism—continuing chemical change within the earth. Nature 296:525–530CrossRefGoogle Scholar
  5. Banerjee S, Kyser TK, Mitchell RH (2018) Oxygen and hydrogen isotopic composition of phlogopites and amphiboles in diamond-bearing kimberlite hosted MARID xenoliths: constraints on fluid-rock interaction and recycled crustal material in the deep continental lithospheric mantle. Chem Geol 479:272–285CrossRefGoogle Scholar
  6. Barrett DR, Berg GW (1975) Complimentary petrographic and strontium isotope ratio studies of South African kimberlite. Phys Chem Earth 9:619–635CrossRefGoogle Scholar
  7. Barton M (1979) A comparative study of some minerals occurring in the potassium-rich alkaline rocks of the Leucite Hills, Wyoming, the Vico volcano, western Italy, and the Toro Ankole region, Uganda. Neues Jahrb Mineral Abh 137:113–134Google Scholar
  8. Beermann O, Holtz F, Duesterhoeft E (2018) Magma storage conditions and differentiation of the mafic Lower Pollara volcanics, Salina Island, Aeolian Islands, Italy: implications for the formation conditions of shoshonites and potassic rocks. Contrib Miner Petrol (in press)Google Scholar
  9. Bénard A, Arculus RJ, Nebel O, Ionov DA, McAlpine SRB (2017) Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas. Geochim Cosmochim Acta 199:287–303CrossRefGoogle Scholar
  10. Bergman SC (1987) Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks, vol 30. Geological Society, Geological Society Special Publication, London, pp 103–190CrossRefGoogle Scholar
  11. Boari E, Avanzinelli R, Melluso L, Giordano G, Mattei M, De Benedetti AA, Morra V, Conticelli S (2009) Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” Volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bull Volc 71:977–1005CrossRefGoogle Scholar
  12. Brod JA, Gibson SA, Thompson RN, Junqueira-Brod TC, Seer HJ, Castanheira de Moraes L, Boaventura GR (2000) The kamafugite-carbonatite association in the Alto Paranaiba igneous province (APIP), southeastern Brazil. Rev Bras de Geociências 30:408–412CrossRefGoogle Scholar
  13. Campbell IH, Stepanov AS, Liang HY, Allen CM, Norman MD, Zhang YQ, Xie YW (2014) The origin of shoshonites: new insights from the tertiary high-potassium intrusions of eastern Tibet. Contrib Miner Petrol 167:983–1005CrossRefGoogle Scholar
  14. Cao K, Yang ZM, Xu JF, Fu B, Li WK, Sun MY (2018) Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet. Lithos 307:436–449CrossRefGoogle Scholar
  15. Caran Ş (2016) Mineralogy and petrology of leucite ankaratrites with affinities to kamafugites and carbonatites from the Kayıköy area, Isparta, SW Anatolia, Turkey: implications for the influences of carbonatite metasomatism into the parental mantle sources of silica-undersaturated potassic magmas. Lithos 257:13–25CrossRefGoogle Scholar
  16. Carrasquero SI, Rubinstein NA, Gómez ALR, Chiaradia M, Fontignie D, Valencia VA (2018) New insights into petrogenesis of Miocene magmatism associated with porphyry copper deposits of the Andean Pampean flat slab, Argentina. Geosci Front (in press)Google Scholar
  17. Chen Y, Yao S, Pan Y (2014) Geochemistry of lamprophyres at the Daping gold deposit, Yunnan Province, China: constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau. J Asian Earth Sci 93:129–145CrossRefGoogle Scholar
  18. Chen L, Yan Z, Wang Z, Wang K (2018) Petrogenesis of early Cretaceous dioritic dykes in the Shanyang-Zhashui area, south Qinling, central China: evidence for partial melting of thickened lower continental crust. J Asian Earth Sci 158:324–335CrossRefGoogle Scholar
  19. Choi E, Fiorentini M, Giuliani A, Kemp A, Pirajno F, Foley S (2017) Mineralogy, geochemistry, and petrogenesis of Paleoproterozoic alkaline magmas in the Yilgarn Craton, Western Australia. In: 1th international kimberlite conference extended abstract no. 11IKC-4451, 3 ppGoogle Scholar
  20. Civetta L, Innocenti F, Manetti P, Peccerillo A, Poli G (1981) Geochemical characteristics of potassic volcanic from Mts. Ernici, Southern Latium Italy. Contrib Miner Petrol 78:37–47CrossRefGoogle Scholar
  21. Clemens JD, Buick IS, Frei D, Lana C, Villaros A (2018) Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the ‘smoking gun’ of mantle melting and crustal growth during Cape granite genesis? Contrib Miner Petrol (in press)Google Scholar
  22. Cocker HA, Valente DL, Park JW, Campbell IH (2016) Using platinum group elements to identify sulfide saturation in a porphyry Cu system: the El Abra porphyry Cu deposit, northern Chile. J Petrol 56:2491–2514CrossRefGoogle Scholar
  23. Conticelli S, Boari E, Burlamacchi L, Cifelli F, Moscardi F, Laurenzi MA, Ferrari-Pedraglio L, Francalanci L, Benvenuti MG, Braschi E, Manetti P (2015a) Geochemistry and Sr-Nd-Pb isotopes of Monte Amiata Volcano, central Italy: evidence for magma mixing between high-K calc-alkaline and leucititic mantle-derived magmas. Ital J Geosci 134:266–290CrossRefGoogle Scholar
  24. Conticelli S, Avanzinelli R, Ammannati E, Casalini M (2015b) The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the central Mediterranean. Lithos 232:174–196CrossRefGoogle Scholar
  25. Contini S, Venturelli G, Toscani L, Capedri S, Barbieri M (1993) Cr-Zr-armalcolite-bearing lamproites of Cancarix, SE Spain. Miner Mag 57:203–216CrossRefGoogle Scholar
  26. Cundari A (1973) Petrology of the leucite-bearing lavas in New South Wales. J Geol Soc Aust 20:465–492CrossRefGoogle Scholar
  27. Daly RA (1910) Origin of the alkaline rocks. Bull Geol Soc Am 21:87–115CrossRefGoogle Scholar
  28. Dawson JB (1987) The kimberlite clan: relationship with olivine and leucite lamproites, and inferences for upper-mantle metasomatism. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks, vol 30. Geological Society Special Publication, pp 95–101CrossRefGoogle Scholar
  29. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  30. De Wit MJ (1989) Book review: alkaline igneous rocks. Lithos 24:81–82CrossRefGoogle Scholar
  31. Dong GC, Luo MF, Mo XX, Zhao ZD, Dong LQ, Yu XH, Wang X, Li XW, Huang XF, Liu YB (2018) Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun Belt: evidences from geochronology, geochemistry and isotopes. Geosci Front (in press)Google Scholar
  32. Dongre A, Rao NVC, Viljoen KS, Lehmann B (2017) Petrology, genesis and geodynamic implication of the Mesoproterozoic-Late Cretaceous Timmasamudram kimberlite cluster, Wajrakarur field, eastern Dharwar Craton, southern India. Geosci Front 8:541–553CrossRefGoogle Scholar
  33. Dupuis NE, Braid JA, Murphy JB, Shail RK, Archibald DA, Nance RD (2016a) 40Ar/39Ar phlogopite geochronology of lamprophyre dykes in Cornwall, UK: new age constraints on Early Permian post-collisional magmatism in the Rhenohercynian Zone, SW England. J Geol Soc London 172:566–575CrossRefGoogle Scholar
  34. Dupuis NE, Murphy JB, Braid JA, Shail RK, Nance RD (2016b) Mantle evolution in the Variscides of SW England: geochemical and isotopic constraints from mafic rocks. Tectonophysics 681:353–363CrossRefGoogle Scholar
  35. Dyulgerov M, Ovtcharova-Schaltegger M, Alexey Ulianov A, Schaltegger U (2018) Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice: ID-TIMS and LA-ICP-MS study. Int J Earth Sci (in press)Google Scholar
  36. Edgar AD (1987) The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc Spec Pub 30:29–52CrossRefGoogle Scholar
  37. Edgar AD, Mitchell RH (1997) Ultra high pressure-temperature melting experiments on an SiO2-rich lamproite from Smoky Butte, Montana: derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle. J Petrol 38:457–477CrossRefGoogle Scholar
  38. Eyuboglu Y, Chung SL, Santosh M, Dudas FO, Akaryali E (2011) Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Res 19:413–429CrossRefGoogle Scholar
  39. Fedorov PI, Bogomolov ES (2018) Ultrapotassic volcanism of the Valagin Ridge, Kamchatka. Petrology 26:65–81CrossRefGoogle Scholar
  40. Foley SF (1984) Liquid immiscibility and melt segregation in alkaline lamprophyres from labrador. Lithos 17:127–137CrossRefGoogle Scholar
  41. Foley SF, Peccerillo A (1992) Potassic and ultrapotassic magmas and their origin. Lithos 28:181–185CrossRefGoogle Scholar
  42. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci Rev 24:81–134CrossRefGoogle Scholar
  43. Foley SF, Jacob DE, O’Neill HSC (2011) Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contrib Miner Petrol 162:1–20CrossRefGoogle Scholar
  44. Förster B, Aulbach S, Symes C, Gerdes A, Höfer HE, Chacko T (2017) A reconnaissance study of Ti-minerals in cratonic granulite xenoliths and their potential as recorders of lower crust formation and evolution. J Petrol 58:2007–2034CrossRefGoogle Scholar
  45. Franz L, Romer RL (2010) Different styles of metasomatic veining in ultramafic xenoliths from the TUBAF seamount (Bismarck microplate, Papua New Guinea). Lithos 114:30–53CrossRefGoogle Scholar
  46. Franz L, Becker KP, Kramer W, Herzig PM (2002) Metasomatic mantle xenoliths from the Bismarck microplate (Papua New Guinea)—thermal evolution, geochemistry and extent of slab-induced metasomatism. J Petrol 43:315–343CrossRefGoogle Scholar
  47. Gallo F, Giammetti F, Venturelli G, Vernia L (1984) The kamafugitic rocks of San Venanzo and Cuppaello, Central Italy. Neues Jahrb Mineral Monatshefte 5:198–210Google Scholar
  48. Gao J, Klemd R, Zhu M, Wang X, Li J, Wan B, Xiao W, Zeng Q, Shen P, Sun J, Qin K, Campos E (2018) Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: a review. J Asian Earth Sci (in press)Google Scholar
  49. Gernon TM, Spence S, Trueman CN, Taylor RN, Rohling E, Hatter SJ, Harding IC (2015) Emplacement of the Cabezo Mar´ıa lamproite volcano (Miocene, SE Spain). Bull Volc 77:52. Scholar
  50. Gregoire M, Moine BN, O’Reilly SY, Cottin JY, Giret A (2000) Trace element residence and partitioning in mantle xenoliths matasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509CrossRefGoogle Scholar
  51. Giuliani A, Phillips D, Kamenetsky VS, Kendrick MA, Wyatt BA, Goemann K, Hutchinson G (2014) Petrogenesis of mantle polymics breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55:831–858CrossRefGoogle Scholar
  52. Gu H, Yang X, Nie Z, Deng J, Duan L, Hu Q, Shakoor MA, Gao E, Hafiz AAJ (2018) Study of late-Mesozoic magmatic rocks and their related copper-gold-polymetallic deposits in the Guichi ore-cluster district, Lower Yangtze River metallogenic belt, east China. Int Geol Rev (in press)Google Scholar
  53. Gupta AK (2014) Origin of potassium-rich silica deficient igneous rocks. Springer, Heidelberg, p 536Google Scholar
  54. Gülmez F, Can Genc Ş, Prelevic D, Tüysüz O, Karacik Z, Roden MF, Billor Z (2016) Ultrapotassic volcanism from the waning stage of the Neotethyan subduction: a key study from the Izmir–Ankara–Erzincan suture belt, central northern Turkey. J Petrol 57:561–593CrossRefGoogle Scholar
  55. Gwalani LG, Jaques AL, Downes PJ, Rao NVC (2016) Kimberlites, lamproites, carbonatites and associated alkaline rocks: a tribute to the work of Rex T Prider. Miner Petrol 110:149–153CrossRefGoogle Scholar
  56. Haissen F, Cambeses A, Montero P, Bea F, Dilek Y, Mouttaqi A (2017) The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African Craton, Morocco) and its relationship to the alkaline magmatism of Africa. J Afr Earth Sci 127:16–50CrossRefGoogle Scholar
  57. Harris PG (1957) Zone refining and the origin of potassic basalts. Geochim Cosmochim Acta 12:195–208CrossRefGoogle Scholar
  58. Harte B, Hawkesworth CJ (1989) Mantle domains and mantle xenoliths. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks, vol 14. Geological Society of Australia Special Publication, pp 649–686Google Scholar
  59. Haschke M, Günther A (2003) Balancing crustal thickening in arcs by tectonics versus magmatic means. Geol Soc Am 31:933–936Google Scholar
  60. He WY, Mo X, Yang LQ, Xing YL, Dong GC, Yang Z, Gao X, Bao XS (2016) Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: implications for magma mixing/mingling and mineralization. Gondwana Res 40:230–248CrossRefGoogle Scholar
  61. He C, Gong S, Wang L, Chen N, Santosh M, Wang Q (2018) Protracted post-collisional magmatism during plate subduction shutdown in the early Paleoproterozoic: insights from postcollisional granitoid suite in NW China. Gondwana Res 55:92–111CrossRefGoogle Scholar
  62. Holm PM, Lou S, Nielsen A (1982) The geochemistry and petrogenesis of the lavas of the Vulsinian district, Roman Province, Central Italy. Contrib Miner Petrol 80:367–378CrossRefGoogle Scholar
  63. Holmes A (1950) Petrogenesis of katungite and its associates. Am Miner 35:772–792Google Scholar
  64. Hong T, Xu XW, Gao J, Peters SG, Zhang D, Jielili R, Xiang P, Li H, Wu C, You J, Liu J, Ke Q (2018) Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a sub-crustal chamber (Jiamate, East Junggar, NW China). Lithos 299:96–112CrossRefGoogle Scholar
  65. Hou ZQ, Zhang H, Pan X, Yang Z (2011) Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geol Rev 39:21–45CrossRefGoogle Scholar
  66. Iddings JP (1895) Absarokite-shoshonite-banakite series. J Geol 3:935–959CrossRefGoogle Scholar
  67. Imaoka T, Kawabata H, Nagashima M, Nakashima K, Kamei A, Yagi K, Itaya T, Kiji M (2017) Petrogenesis of an early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: implications for the generation of high-Nb basalt magmas in subduction zones. Lithos 291:18–33CrossRefGoogle Scholar
  68. Ionov DA, Doucet LS, Xu Y, Golovin AV, Oleinikov OB (2018) Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonatite-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim Cosmochim Acta 224:132–153CrossRefGoogle Scholar
  69. Ivanov AV, Demonterova EI, Savatenkov VM, Perepelov AB, Ryabov VV, Shevko AY (2018) Late Triassic (Carnian) lamproites from Noril´sk, polar Siberia: evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian craton. Lithos 299:67–78CrossRefGoogle Scholar
  70. Jayabalan M, Udayasankar S, Thiagarajan J, Sasikumar S, Nandhakumar E, Rajakumaran M, Manikandan M, Nagamani S (2015) Petrology and geochemistry of lamprophyre rock types of Salem, Dharmapuri, Krishnagiri and Namakkal districts, Tamil Nadu. J Appl Geochem 17:213–235Google Scholar
  71. Jia X, Wang X, Yang W (2017) Petrogenesis and geodynamic implications of the early Paleozoic potassic and ultrapotassic rocks in the South China Block. J Asian Earth Sci 135:80–94CrossRefGoogle Scholar
  72. Kamenetsky VS, Kamenetsky BM, Golovin AV, Sharygin VV, Maas R (2012) Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186CrossRefGoogle Scholar
  73. Kamenetsky VS, Golovin AV, Maas R, Andrea Giuliani A, Kamenetsky MB, Weiss Y (2014) Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth-Sci Rev 139:145–167CrossRefGoogle Scholar
  74. Kargin AV, Golubevab YY, Demonterovac EI, Koval’chuka EV (2017) Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the northern Anabar Province, Yakutia, Russia. Petrology 25:535–565CrossRefGoogle Scholar
  75. Karsli O, Dokuz A, Kaliwoda M, Uysal I, Aydin F, Kandemir R, Fehr K-T (2014) Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the eastern Pontides, NE Turkey: a key to understanding lamprophyre formation in a subduction-related environment. Lithos 197:181–197CrossRefGoogle Scholar
  76. Kay RW, Gast PW (1973) The rare earth content and origin of alkali-rich basalts. J Geol 81:653–682CrossRefGoogle Scholar
  77. Kiseeva ES, Kamenetsky VS, Yaxley GM, Shee SR (2017) Mantle melting versus mantle metasomatism—“The chicken or the egg” dilemma. Chem Geol 455:120–130CrossRefGoogle Scholar
  78. Krmíček L, Romer RL, Ulrycha J, Glodnyc J, Prelević D (2016) Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr-Nd-Pb-Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gondwana Res 35:198–216CrossRefGoogle Scholar
  79. Kubínová Š, Faryad SW, Verner K, Schmitz M, Holub F (2017) Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collisional mantle dynamics during Variscan orogeny in the Bohemian Massif. Lithos 273:205–221CrossRefGoogle Scholar
  80. Le Maitre RW (ed) (1989) A classification of igneous rocks and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Oxford, p 193Google Scholar
  81. Lepore GO, Bindi L, Pedrazzi G, Conticelli S, Bonazzi P (2017) Structural and chemical variations in phlogopite from lamproitic rocks of the central Mediterranean region. Lithos 287:191–205CrossRefGoogle Scholar
  82. Li XH, Li ZX, Li WX, Wang XC, Gao Y (2013) Revisiting the “C-type adakites” of the lower Yangtze River belt, central eastern China: in-situ zircon Hf-O isotope and geochemical constraints. Chem Geol 345:1–15CrossRefGoogle Scholar
  83. Liu D, Zhao Z, Zhu DC, Niu Y, DePaolo DJ, Harrison TM, Mo X, Dong G, Zhou S, Sun C, Zhang Z, Liu J (2014) Post-collisional potassic and ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to India-Asia collision and convergence. Geochim Cosmochim Acta 143:207–231CrossRefGoogle Scholar
  84. Liu D, Zhao Z, DePaolo DJ, Zhu DC, Meng FY, Shi Q, Wang Q (2017) Potassic volcanic rocks and adakitic intrusions in southern Tibet: insights into mantle–crust interaction and mass transfer from the Indian plate. Lithos 271:48–64CrossRefGoogle Scholar
  85. Lu YJ, Kerrich R, McCuaig TC, Li ZX, Hart CJR, Cawood PA, Hou ZQ, Bagas L, Cliff J, Belousova EA, Tang S (2013) Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: petrogenesis and tectonic implications. J Petrol 54:1309–1348CrossRefGoogle Scholar
  86. Lu YJ, McCuaig TC, Li ZX, Jourdan F, Hart CJR, Hou ZQ, Tang S (2015) Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: mantle source and tectonic implications. Lithos 233:139–161CrossRefGoogle Scholar
  87. Luguet A, Jaques AL, Pearson DG, Smith CB, Bulanova GP, Roffey SL, Rayner MJ, Lorand JP (2009) An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, western Australia, and implications for cratonic diamond occurrences. Lithos 112:1096–1108CrossRefGoogle Scholar
  88. Lustrino M, Agostini S, Chalal Y, Fedele L, Stagno V, Colombi F, Bouguerra A (2016) Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites. J Volcanol Geoth Res 327:539–553CrossRefGoogle Scholar
  89. Ma Q, Xu YG, Zheng JP, Sun M, Griffin WL, Wei Y, Ma L, Yu X (2016) High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber. Lithos 260:211–224CrossRefGoogle Scholar
  90. Ma Q, Zheng JP, Xu YG, Griffin WL, Zhang RS (2015) Are continental “adakites” derived from thickened or foundered lower crust? Earth Planet Sci Lett 419:125–133CrossRefGoogle Scholar
  91. Maier WD, O`Brien H, Peltonen P, Barnes SJ (2017) Platinum-group element contents of Karelian kimberlites: implications for the PGE budget of the sub-continental lithospheric mantle. Geochimica et Cosmochim Acta 216:358–371CrossRefGoogle Scholar
  92. Martin AM, Médard E, Righter K, Lanzirotti A (2017) Intraplate mantle oxidation by volatile-rich silicic magmas. Lithos 293:320–333CrossRefGoogle Scholar
  93. Maughan DT, Keith JD, Christiansen EH, Pulsipher T, Hattori K, Evans NJ (2002) Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Mineral Deposita 37:14–37CrossRefGoogle Scholar
  94. Menzies MA, Hawkesworth CJ (eds) (1987) Mantle metasomatism. Academic Press, London, p 472Google Scholar
  95. Mitchell RH (1986) Kimberlites: mineralogy, geochemistry, and petrology. Plenum Press, New York, p 442CrossRefGoogle Scholar
  96. Mitchell RH (1989) Aspects of the petrology of kimberlites and lamproites: some definitions and distinctions. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks, vol 14. Geological Society of Australia Special Publication, pp 7–45Google Scholar
  97. Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York, p 447CrossRefGoogle Scholar
  98. Mitchell RH (1995) Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproitic magams. J Petrol 36:1455–1474CrossRefGoogle Scholar
  99. Mitchell RH (2006) Potassic magmas derived from metasomatized lithospheric mantle: nomenclature and relevance to exploration for diamond-bearing rocks. J Geol Soc India 67:317–327Google Scholar
  100. Mittempergher M (1965) Volcanism and petrogenesis in the San Venanzo area, Italy. Bull Volc 28:1–12CrossRefGoogle Scholar
  101. Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13:97–108CrossRefGoogle Scholar
  102. Motuza G, Šliaupa S (2017) Paleogene volcanism in central Afghanistan: possible far-field effect of the India-Eurasia collision. J Asian Earth Sci 147:502–515CrossRefGoogle Scholar
  103. Muravyeva NS, Senin VG (2018) Xenoliths from Bunyaruguru volcanic field: some insights into lithology of East African Rift upper mantle. Lithos 299:17–36CrossRefGoogle Scholar
  104. Müller D, Stumpfl EF, Taylor WR (1992) Shoshonitic and alkaline lamprophyres with elevated Au and PGE concentrations from the Kreuzeck Mountains, Eastern Alps, Austria. Miner Petrol 46:23–42CrossRefGoogle Scholar
  105. Müller D, Morris BJ, Farrand MG (1993) Potassic alkaline lamprophyres with affinities to lamproites from the Karinya Syncline, South Australia. Lithos 30:123–137CrossRefGoogle Scholar
  106. Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archean subducted sediments. J Petrol 43:981–1001CrossRefGoogle Scholar
  107. Niu X, Chen B, Feng G, Liu F, Yang J (2017) Origin of lamprophyres from the northern margin of the North China Craton: implications for mantle metasomatism. J Geol Soc London 174:353–364CrossRefGoogle Scholar
  108. Orozco-Garza A, Dostal J, Keppie JD, Paz-Moreno FA (2013) Mid-tertiary (25–21 Ma) lamprophyres in NW Mexico derived from subduction-modified subcontinental lithospheric mantle in an extensional backarc environment following steepening of the Benioff zone. Tectonophysics 590:59–71CrossRefGoogle Scholar
  109. Pandey A, Rao NVC, Pandit D, Pankaj P, Pandey R, Sahoo S, Kumar A (2017a) Subduction—tectonics in the evolution of the eastern Dharwar craton, southern India: insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precambr Res 298:235–251CrossRefGoogle Scholar
  110. Pandey A, Rao NVC, Chakrabarti R, Pandit D, Pankaj P, Kumar A, Sahoo S (2017b) Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source. Lithos 293:218–233CrossRefGoogle Scholar
  111. Pandey R, Rao NVC, Dhote P, Pandit D, Choudhary AK, Sahoo S, Lehmann B (2018) Rift associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutch, northwestern India: tectonomagmatic implications. Geosci Front (in press)Google Scholar
  112. Panina LI, Rokosova EY, Isakova AT, Tolstov AV (2016) Lamprophyres of the Tomtor Massif: a result of mixing between potassic and sodic alkaline mafic magmas. Petrology 24:608–626CrossRefGoogle Scholar
  113. Panina LI, Rokosova EY, Isakova AT, Tolstov AV (2017) Mineral composition of alkaline lamprophyres of the Tomtor massif as reflection of their genesis. Russ Geol Geophys 58:891–906CrossRefGoogle Scholar
  114. Park K, Choi SH, Cho M, Lee DC (2017) Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt. Lithos 287:330–344CrossRefGoogle Scholar
  115. Pearce JA (1982) Trace elements characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525--548Google Scholar
  116. Peccerillo A (1992) Potassic and ultrapotassic rocks: compositional characteristics, petrogenesis, and geologic significance. IUGS Episodes 15:243–251Google Scholar
  117. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonon area, northern Turkey. Contrib Miner Petrol 58:63–81CrossRefGoogle Scholar
  118. Pereira RS, Fuck RA, França OS, Leite AA (2017) Evidence of young, proximal and primary (YPP) diamond source occurring in alluviums in the Santo Antônio do Bonito, Santo Inácio and Douradinho rivers in the Coromandel region, Minas Gerais. Braz J Geol 47:383–401CrossRefGoogle Scholar
  119. Poletti JE, Cottle JM, Hagen-Peter GA, Lackey JS (2016) Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California. J Petrol 57:1555–1598Google Scholar
  120. Prelević D, Foley SF, Romer RL, Cvetkovic V, Downes H (2005) Tertiary ultrapotassic volcanism in Serbia: constraints on petrogenesis and mantle source characteristics. J Petrol 46:1443–1487CrossRefGoogle Scholar
  121. Prider RT (1960) The leucite lamproites of the Fitzroy Basin, western Australia. J Geol Soc Aust 6:71–118CrossRefGoogle Scholar
  122. Priyatkina N, Khudoley AK, Ustinov VN, Kullerud K (2014) 1.92 Ga kimberlitic rocks from Kimozero, NW Russia: their geochemistry, tectonic setting and unusual field occurrence. Precambr Res 249:162–179CrossRefGoogle Scholar
  123. Rao NVC, Dongre A, Wu FY, Lehmann B (2016) A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: implication for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Res 35:378–389CrossRefGoogle Scholar
  124. Rezeau H, Moritz R, Leuthold J, Hovakimyan S, Tayan R, Chiaradia M (2017) 30 Myr of Cenozoic magmatism along the Tethyan margin during Arabia-Eurasia accretionary orogenesis (Meghri–Ordubad pluton, southernmost Lesser Caucasus). Lithos 289:108–124CrossRefGoogle Scholar
  125. Richards JP, Razavi A, Spell T, Locock A, Sholeh A, Aghazadeh M (2018) Magmatic evolution and porphyry-epithermal mineralization in the Taftan volcanic complex, southeastern Iran. Ore Geol Rev 95:258–279CrossRefGoogle Scholar
  126. Rittmann A (1933) Die geologisch bedingte Evolution und Differentiation des Somma-Vesuv Magmas. Zeitschrift für Vulkanologie 15:8–94Google Scholar
  127. Rock NMS (1977) The nature and origin of lamprophyres: some definitions, distinctions and derivations. Earth Sci Rev 13:123–169CrossRefGoogle Scholar
  128. Rock NMS (1987) The nature and origin of lamprophyres: an overview. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks, vol 30. Geological Society of London Special Publication, pp 191–226CrossRefGoogle Scholar
  129. Rock NMS (1991) Lamprophyres. Blackie, Glasgow, p 285CrossRefGoogle Scholar
  130. Rock NMS, Hallberg JA, Groves DI, Mather PJ (1988) Archaean lamprophyres in the goldfields of the Yilgarn block, western Australia: new indications of their widespread distribution and significance. In: Ho SE, Groves DI (eds) Advances in understanding Precambrian gold deposits volume II, vol 12. Geology Department and University Extension, The University of Western Australia Publication, pp 245–275Google Scholar
  131. Rock NMS, Taylor WR, Perring CS (1990) Lamprophyres—what are lamprophyres? In: Ho SE, Groves DI, Bennett JM (eds) Gold deposits of the Archaean Yilgarn block, Western Australia: nature, genesis and exploration guides, vol 20. Geology Department and University Extension, The University of Western Australia Publication, pp 128–135Google Scholar
  132. Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, Central Italy, and implications for mantle enrichment processes beneath the Roman Region. Contrib Miner Petrol 90:244–257CrossRefGoogle Scholar
  133. Rowins SM, Cameron EM, Lalonde AE, Ernst RE (1993) Petrogenesis of the late Archaean syenitic Murdoch Creek pluton, Kirkland Lake, Ontario: evidence for an extensional tectonic setting. Can Miner 31:219–244Google Scholar
  134. Sahama AG (1974) Potassium-rich alkaline rocks. In: Sørensen H (ed) The alkaline rocks. Wiley, New York, pp 96–109Google Scholar
  135. Santosh M, Hari KR, He XF, Han YS, Prasanth MPM (2018) Oldest lamproites from Peninsular India track the onset of Paleoproterozoic plume-induced rifting and the birth of a large igneous province. Gondwana Res 55:1–20CrossRefGoogle Scholar
  136. Satsukawa T, Godard M, Demouchy S, Michibayashi K, Ildefonse B (2017) Chemical interactions in the subduction factory: new insights from an in situ trace element and hydrogen study of the Ichinomegata and Oki-Dogo mantle xenoliths (Japan). Geochim Cosmochim Acta 208:234–267CrossRefGoogle Scholar
  137. Satyanarayanan M, Rao DVS, Renjith ML, Singh SP, Babu EVSSK, Korakoppa MM (2017) Petrogenesis of carbonatitic lamproitic dykes from the Sidhi gneissic complex, central India. Geosci Front 9:531–547CrossRefGoogle Scholar
  138. Savelli C (1967) The problem of rock assimilation by Somma-Vesuvius magma: I. composition of Somma and Vesuvius lavas. Contrib Miner Petrol 16:328–353CrossRefGoogle Scholar
  139. Shaikh AM, Patel SC, Ravi S, Behera D, Pruseth KL (2017) Mineralogy of the TK1 and TK4 ‘kimberlites’ in the Timmasamudram cluster, Wajrakarur Kimberlite Field, India: implications for lamproite magmatism in a field of kimberlites and ultramafic lamprophyres. Chem Geol 455:208–230CrossRefGoogle Scholar
  140. Shaikh AM, Kumar SP, Patel SC, Thakur SS, Ravi S, Behera D (2018) The P3 kimberlite and P4 lamproite, Wajrakarur kimberlite field, India: mineralogy, and major and minor element compositions of olivines as records of their phenocrystic versus xenocrystic origin. Mineral Petrol (in press)Google Scholar
  141. Shaw CSJ, Lebert BS, Woodland AB (2018) Thermodynamic modelling of mantle-melt interaction evidenced by wehrlite xenoliths from the Rockeskyller Kopf volcanic complex, west Eifel volcanic field, Germany. J Petrol (in press)Google Scholar
  142. Shchukina EV, Agashev AM, Pokhilenko NP (2017) Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region NW Russia. Geosci Frontiers 8:641–651CrossRefGoogle Scholar
  143. Shigley JE, Chapman J, Ellison RK (2001) Lamproites and diamonds. Gems Gemology 37:26–41CrossRefGoogle Scholar
  144. Skinner EMW (1989) Contrasting group 2 and group 1 kimberlite petrology: towards a genetic model for kimberlites. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks, vol 14. Special Publication, Geological Society of Australia, Sydney, pp 528–544Google Scholar
  145. Smart KA, Cartigny P, Tappe S, O’Brien H, Klemme S (2017) Lithospheric diamond formation as a consequence of methane-rich volatile flooding: an example from diamondiferous eclogite xenoliths of the Karelian craton (Finland). Geochim Cosmochim Acta 206:312–342CrossRefGoogle Scholar
  146. Smith CB, Gurney JJ, Skinner EMW, Clement CR, Ebrahim N (1985) Geochemical character of southern African kimberlites: a new approach based upon isotopic constraints. Trans Geol Soc South Afr 88:267–280Google Scholar
  147. Soloviev SG (2014a) The metallogeny of shoshonitic magmatism, vol I. Scientific World Publications, Moscow, pp 1–528 (in Russian)Google Scholar
  148. Soloviev SG (2014b) The metallogeny of shoshonitic magmatism, vol II. Scientific World Publications, Moscow, pp 1–472 (in Russian)Google Scholar
  149. Sørensen H (1974) Origin of the alkaline rocks: a summary and retrospect. In: Sørensen H (ed) The alkaline rocks, petrogenesis. Wiley, London, pp 535–539Google Scholar
  150. Srivastava RK, Rao NVC (2007) Petrology, geochemistry and tectonic significance of Palaeoproterozoic alkaline lamprophyres from the Jungel Valley, Mahakoshal supracrustal belt, Central India. Mineral Petrol 89:189–215CrossRefGoogle Scholar
  151. Sun X, Lu YJ, McCuaig TC, Zheng YY, Chang HF, Guo F, Xu LJ (2018) Miocene ultrapotassic, high-Mg dioritic and adakite-like rocks from Zhunuo in southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J Petrol (in press)Google Scholar
  152. Štemprok M, Dolejš D, Holub F (2014) Late Variscan calc-alkaline lamprophyres in the Krupka ore district, Eastern Krušnè hory/Erzgebirge: their relationship to Sn-W mineralization. J Geosci 59:41–68CrossRefGoogle Scholar
  153. Tang Y, Li X, Xie Y, Liu L, Lan T, Meffre S, Huang C (2017) Geochronology and geochemistry of late Jurassic adakitic intrusions and associated porphyry Mo–Cu deposit in the Tongcun area, east China: implications for metallogenesis and tectonic setting. Ore Geol Rev 80:289–308CrossRefGoogle Scholar
  154. Tian SH, Yang ZS, Hou ZQ, Mo X, Hu WJ, Zhao Y, Zhao XY (2017) Subduction of the Indian lower crust beneath southern Tibet revealed by the post-collisional potassic and ultrapotassic rocks in SW Tibet. Gondwana Res 41:29–50CrossRefGoogle Scholar
  155. Till CB, Grove TL, Withers AC (2012) The beginnings of hydrous mantle wedge melting. Contrib Miner Petrol 163:669–688CrossRefGoogle Scholar
  156. Torabi G (2011) Middle Eocene volcanic shoshonites from the western margin of the Central-East Iranian microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust. Petrology 19:675–689CrossRefGoogle Scholar
  157. Wagner PA (1914) The diamond fields of southern Africa. The Transvaal Leader, JohannesburgGoogle Scholar
  158. Wang J, Hattori K, Liu J, Gao Y, Zhang H (2017) Shoshonitic and adakitic magmatism of the early Paleozoic age in the western Kunlun orogenic belt, NW China: implications for the early evolution of the northwestern Tibetan plateau. Lithos 287:345–362CrossRefGoogle Scholar
  159. Wyman DA, Hollings P, Conceição RV (2015) Geochemistry and radiogenic isotope characteristics of xenoliths in Archean diamondiferous lamprophyres: implications for the Superior Province cratonic keel. Lithos 233:111–130CrossRefGoogle Scholar
  160. Xie J, Wang Y, Li Q, Yan J, Sun W (2018) Petrogenesis and metallogenic implications of Late Mesozoic intrusive rocks in the Tongling region, eastern China: a case study and perspective review. Int Geol Rev (in press)Google Scholar
  161. Xu J, Melgarejo JC, Castillo-Oliver M (2018) Styles of alteration of Ti oxides of the kimberlite groundmass: implications on the petrogenesis and classification of kimberlites and similar rocks. Minerals 8:51. Scholar
  162. Yang ZM, Goldfarb R, Chang ZS (2016) Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. Econ Geol Spec Publ 19:279–300Google Scholar
  163. Yücel C (2018) Geochronology, geochemistry, and petrology of adakitic Pilocene-Quaternary volcanism in the Sebinkarahisar (Giresun) area, NE Turkey. International Geology Reviews (in press)Google Scholar
  164. Yumul GP, Brown WW, Dimalanta CB, Ausa CA, Faustino-Eslava DV, Payot BD, Ramos NT, Lizada ANL, Buena AE, Villaplaza BRB, Manalo PC, Queaño KL, Guotana JMR, Pacle NAD (2017) Adakitic rocks in the Masara gold-silver mine, Compostela Valley, Mindanao, Philippines: different places, varying mechanisms? J Asian Earth Sci 142:45–55CrossRefGoogle Scholar
  165. Zhang CC, Sun WD, Wang JT, Zhang LP, Sun SJ, Wu K (2017) Oxygen fugacity and porphyry mineralization: a zircon perspective of Dexing porphyry Cu deposit, China. Geochim Cosmochim Acta 206:343–363CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NDP Exploration Team—Target GenerationQPX ChileLas Condes, SantiagoChile
  2. 2.Department of Geology and Geophysics, Centre for Exploration TargetingThe University of Western AustraliaCrawleyAustralia

Personalised recommendations