Advertisement

Formal Verification of Platoon Control Strategies

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10886)

Abstract

Recent developments in autonomous driving, vehicle-to-vehicle communication and smart traffic controllers have provided a hope to realize platoon formation of vehicles. The main benefits of vehicle platooning include improved safety, enhanced highway utility, efficient fuel consumption and reduced highway accidents. One of the central components of reliable and efficient platoon formation is the underlying control strategies, e.g., constant spacing, variable spacing and dynamic headway. In this paper, we provide a generic formalization of platoon control strategies in higher-order logic. In particular, we formally verify the stability constraints of various strategies using the libraries of multivariate calculus and Laplace transform within the sound core of HOL Light proof assistant. We also illustrate the use of verified stability theorems to develop runtime monitors for each controller, which can be used to automatically detect the violation of stability constraints in a runtime execution or a logged trace of the platoon controller. Our proposed formalization has two main advantages: (1) it provides a framework to combine both static (theorem proving) and dynamic (runtime) verification approaches for platoon controllers; and (2) it is inline with the industrial standards, which explicitly recommend the use of formal methods for functional-safety, e.g., automotive ISO 26262.

Keywords

Autonomous driving Platoon control Formal verification 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Changfu, Z., Kai, L.: Development of the drive-by-wire technology. Automobile Technol. 3(001), 1–5 (2006)Google Scholar
  5. 5.
    Van Arem, B., Van Driel, C.J.G., Visser, R.: The impact of cooperative adaptive cruise control on traffic-flow characteristics. Trans. Intell. Transp. Syst. 7(4), 429–436 (2006)CrossRefGoogle Scholar
  6. 6.
    Kawazoe, H., Shimakage, M., Sadano, O., Sato, S.: Lane Keeping Assistance System and Method for Automotive Vehicle, US Patent 6,493,619, 10 December 2002Google Scholar
  7. 7.
    Fernandes, P., Nunes, U.: Platooning with IVC-enabled autonomous vehicles: strategies to mitigate communication delays, improve safety and traffic flow. Trans. Intell. Transp. Syst. 13(1), 91–106 (2012)CrossRefGoogle Scholar
  8. 8.
    Biswas, S., Tatchikou, R., Dion, F.: Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety. Commun. Mag. 44(1), 74–82 (2006)CrossRefGoogle Scholar
  9. 9.
    Yi, J., Alvarez, L., Horowitz, R., Canudas De Wit, C.: Adaptive emergency braking control using a dynamic tire/road Friction Model. In: Decision and Control, vol. 1, pp. 456–461. IEEE (2000)Google Scholar
  10. 10.
    Eyre, J., Yanakiev, D., Kanellakopoulos, I.: A simplified framework for string stability analysis of automated vehicles. Veh. Syst. Dyn. 30(5), 375–405 (1998)CrossRefGoogle Scholar
  11. 11.
    Barooah, P., Mehta, P.G., Hespanha, J.P.: Mistuning-based control design to improve closed-loop stability margin of vehicular platoons. Trans. Autom. Control 54(9), 2100–2113 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017)CrossRefGoogle Scholar
  13. 13.
    Dolginova, E.: Safety Verification for Automated Vehicle Maneuvers. Ph.D thesis, Massachusetts Institute of Technology (1998)Google Scholar
  14. 14.
    Wongpiromsarn, T., Murray, R.M.: Formal verification of an autonomous vehicle system. In: Conference on Decision and Control (2008)Google Scholar
  15. 15.
    Mashkoor, A., Hasan, O.: Formal probabilistic analysis of cyber-physical transportation systems. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7335, pp. 419–434. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31137-6_32CrossRefGoogle Scholar
  16. 16.
    Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0031814CrossRefGoogle Scholar
  17. 17.
    Kumar, R.: Self-compilation and Self-verification. Technical report, University of Cambridge, Computer Laboratory (2016)Google Scholar
  18. 18.
    Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reasoning 50(2), 173–190 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Taqdees, S.H., Hasan, O.: Formalization of laplace transform using the multivariable calculus theory of HOL-Light. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_50CrossRefGoogle Scholar
  20. 20.
    Rashid, A., Hasan, O.: Formalization of transform methods using HOL Light. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 319–332. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62075-6_22CrossRefGoogle Scholar
  21. 21.
    Rashid, A.: Formal Verification of Platoon Control Strategies (2018). http://save.seecs.nust.edu.pk/projects/fvpcs/
  22. 22.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  23. 23.
    A History of OCaml (2015). http://ocaml.org/learn/history.html
  24. 24.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)Google Scholar
  25. 25.
    Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Automated Software Engineering, pp. 135–143 (2001)Google Scholar
  26. 26.
    Dunn, D.D.: Attacker-induced Traffic Flow Instability in a Stream of Automated Vehicles. Utah State University (2015)Google Scholar
  27. 27.
    Siddique, U., Mahmoud, M.Y., Tahar, S.: On the formalization of Z-Transform in HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 483–498. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08970-6_31CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer Science (SEECS)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations