Systems-Level Analysis of Bacterial Regulatory Small RNA Networks

Part of the RNA Technologies book series (RNATECHN)


The RNA landscape of all sequenced bacteria is littered with regulatory noncoding small RNAs (sRNA). Understanding the functions of these sRNAs has lagged behind their identification, as few high-throughput approaches existed to capture sRNA interactions in vivo. Recently, methodologies have been described that allow for profiling of the sRNA interaction network facilitating systems-level analysis sRNA regulation. This chapter discusses recent advances in our understanding of sRNA function, technical advances that allow us to capture sRNA interactions in vivo, and the computational tools that allow meaningful conclusions to be drawn from these data.


Small regulatory RNAs Bacteria RNase E Hfq Networks sRNA interactomes 


  1. A list of manually curated essential genes from the Ecoliwiki (2017) Retrieved December 31, 2017 from
  2. Altuvia S, Weinstein-Fischer D, Zhang A et al (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53CrossRefPubMedPubMedCentralGoogle Scholar
  3. Argaman L, Argaman L, Hershberg R et al (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11:941–950CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aw JGA, Shen Y, Wilm A et al (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol Cell 62:603–617CrossRefPubMedGoogle Scholar
  5. Bandyra KJ, Said N, Pfeiffer V et al (2012) The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 47:943–953CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barquist L, Vogel J (2015) Accelerating discovery and functional analysis of small RNAs with new technologies. Annu Rev Genet 49:367–394CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barquist L, Westermann AJ, Vogel J (2016) Molecular phenotyping of infection-associated small non-coding RNAs. Philos Trans R Soc Lond 371:20160081CrossRefGoogle Scholar
  10. Bernhart SH, Hofacker IL, Stadler PF (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics 22:614–615CrossRefPubMedGoogle Scholar
  11. Bouvier M, Sharma CM, Mika F et al (2008) Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 32:827–837CrossRefPubMedGoogle Scholar
  12. Breitkreutz D, Hlatky L, Rietman E et al (2012) Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl Acad Sci USA 109:9209–9212CrossRefPubMedGoogle Scholar
  13. Brownlee GG (1971) Sequence of 6S RNA of E. coli. Nat New Biol 229:147–149CrossRefPubMedGoogle Scholar
  14. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carbon S, Dietze H, Lewis SE et al (2017) Expansion of the gene ontology knowledgebase and resources: the gene ontology consortium. Nucleic Acids Res 45:D331–D338CrossRefGoogle Scholar
  16. Chao Y, Li L, Girodat D et al (2017) In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Mol Cell 65:39–51CrossRefPubMedPubMedCentralGoogle Scholar
  17. Coleman J, Green PJ, Inouye M (1984) The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell 37:429–436CrossRefPubMedGoogle Scholar
  18. Collavin L, Lunardi A, Del Sal G (2010) p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 17:901–911CrossRefPubMedGoogle Scholar
  19. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1695Google Scholar
  20. Deana A, Belasco JG (2005) Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev 19:2526–2533CrossRefPubMedGoogle Scholar
  21. Eggenhofer F, Tafer H, Stadler PF et al (2011) RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res 39:W149–W154CrossRefPubMedPubMedCentralGoogle Scholar
  22. Feng L, Rutherford ST, Papenfort K et al (2015) A Qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:228–240CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fröhlich KS, Papenfort K, Fekete A et al (2013) A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J 32:2963–2979CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gama-Castro S, Salgado H, Santos-Zavaleta A et al (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44:D133–D143CrossRefPubMedGoogle Scholar
  25. Gerdes SY, Scholle MD, Campbell JW et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ghadie MA, Coulombe-Huntington J, Xia Y (2018) Interactome evolution: insights from genome-wide analyses of protein–protein interactions. Curr Opin Struct Biol 50:42–48CrossRefPubMedGoogle Scholar
  27. Gogol EB, Rhodius VA, Papenfort K et al (2011) Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proc Natl Acad Sci USA 108:12875–12880CrossRefPubMedGoogle Scholar
  28. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:a003798CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grosswendt S, Filipchyk A, Manzano M et al (2014) Unambiguous Identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54:1042–1054CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guo MS, Updegrove TB, Gogol EB et al (2014) MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 28:1620–1634CrossRefPubMedPubMedCentralGoogle Scholar
  31. Han K, Tjaden B, Lory S (2016) GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat Microbiol 2:16239CrossRefPubMedPubMedCentralGoogle Scholar
  32. Helwak A, Kudla G, Dudnakova T et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hofree M, Shen JP, Carter H et al (2013) Network-based stratification of tumor mutations. Nat Methods 10:1108–1115CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang HY, Chang HY, Chou CH et al (2009) sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res 37:D150–D154CrossRefPubMedGoogle Scholar
  35. Isik Z, Baldow C, Cannistraci CV et al (2015) Drug target prioritization by perturbed gene expression and network information. Sci Rep 5:17417CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jagodnik J, Chiaruttini C, Guillier M (2017) Stem-loop structures within mRNA coding sequences activate translation initiation and mediate control by small regulatory RNAs. Mol Cell 68:158–170CrossRefPubMedGoogle Scholar
  37. Kacharia FR, Millar JA, Raghavan R (2017) Emergence of new sRNAs in enteric bacteria is associated with low expression and rapid evolution. J Mol Evol 84:204–213CrossRefGoogle Scholar
  38. Kato J, Hashimoto M (2007) Construction of consecutive deletions of the Escherichia coli chromosome. Mol Sys Biol 3:132Google Scholar
  39. Kauke MJ, Traxlmayr MW, Parker JA et al (2017) An engineered protein antagonist of K-Ras/B-Raf interaction. Sci Rep 42:5831CrossRefGoogle Scholar
  40. Kavita K, de Mets F, Gottesman S (2017) New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr Opin Microbiol 42:53–61CrossRefPubMedPubMedCentralGoogle Scholar
  41. Keller EF (2005) Revisiting “scale-free” networks. BioEssays 27:1060–1068CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kery MB, Feldman M, Livny J et al (2017) TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42:124–129CrossRefGoogle Scholar
  43. Kim H, Jung K-W, Maeng S et al (2015) Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Sci Rep 5:8767CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. In: Hamacher M, Eisenacher M, Stephan C (eds) Data mining in proteomics, vol 696. Humana, New York, pp 291–303CrossRefGoogle Scholar
  45. Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci USA 108:10010–10015CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kumar A, Beloglazova N, Bundalovic-Torma C et al (2015) Conditional epistatic interaction maps reveal global functional rewiring of genome integrity pathways in Escherichia coli. Cell Rep 14:648–661CrossRefGoogle Scholar
  47. Lalaouna D, Simoneau-Roy M, Lafontaine D et al (2013) Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 1829:742–747CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lalaouna D, Carrier MC, Semsey S et al (2015) A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol Cell 58:393–405Google Scholar
  49. Levine E, Zhang Z, Kuhlman T et al (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5:1998–2010CrossRefGoogle Scholar
  50. Lu Z, Zhang QC, Lee B et al (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–1279CrossRefPubMedPubMedCentralGoogle Scholar
  51. Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46:813–826CrossRefPubMedGoogle Scholar
  52. Massé E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383CrossRefPubMedPubMedCentralGoogle Scholar
  53. Massé E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971CrossRefPubMedPubMedCentralGoogle Scholar
  54. Melamed S, Peer A, Faigenbaum-Romm R et al (2016) Global mapping of small RNA-target interactions in bacteria. Mol Cell 63:884–897CrossRefPubMedPubMedCentralGoogle Scholar
  55. Menche J, Sharma A, Kitsak M et al (2015) Uncovering disease-disease relationships through the incomplete interactome. Science 347:1257601CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miyakoshi M, Chao Y, Vogel J (2015) Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 34:1478–1492CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970CrossRefPubMedGoogle Scholar
  58. Nedialkova LP, Denzler R, Koeppel MB et al (2014) Inflammation fuels colicin Ib-dependent competition of Salmonella serovar typhimurium and E. coli in enterobacterial blooms. PLoS Pathogens 10:1003844CrossRefGoogle Scholar
  59. Nguyen TC, Cao X, Yu P et al (2016) Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat Commun 7:12023CrossRefPubMedPubMedCentralGoogle Scholar
  60. Papenfort K, Vanderpool CK (2015) Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 39:362–378CrossRefPubMedPubMedCentralGoogle Scholar
  61. Papenfort K, Sun Y, Miyakoshi M et al (2013) Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–437CrossRefPubMedPubMedCentralGoogle Scholar
  62. Papenfort K, Espinosa E, Casadesús J (2015) Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc Natl Acad Sci USA 112:E4772–E4781CrossRefPubMedGoogle Scholar
  63. Peer A, Margalit H (2011) Accessibility and evolutionary conservation mark bacterial small-RNA target-binding regions. J Bacteriol 193:1690–1701CrossRefPubMedPubMedCentralGoogle Scholar
  64. Plumbridge J, Bossi L, Oberto J et al (2014) Interplay of transcriptional and small RNA-dependent control mechanisms regulates chitosugar uptake in Escherichia coli and Salmonella. Mol Microbiol 92:648–658CrossRefPubMedGoogle Scholar
  65. Prévost K, Desnoyers G, Jacques JF et al (2011) Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev 25:385–396CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rajagopala SV, Sikorski P, Kumar A et al (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol 32:285–290CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rolland T, Taşan M, Charloteaux B (2014) A proteome-scale map of the human interactome network. Cell 159:1212–1226CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sahni N, Yi S, Taipale M et al (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161:647–660CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schu DJ, Zhang A, Gottesman S et al (2015) Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 34:2557–2573CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sedlyarova N, Shamovsky I, Bharati BK et al (2016) sRNA-mediated control of transcription termination in E. coli. Cell 167:111–121CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sharma E, Sterne-Weiler T, O’Hanlon D et al (2016) Global mapping of human RNA-RNA interactions. Mol Cell 62:618–626CrossRefPubMedGoogle Scholar
  72. Soper TJ, Woodson SA (2008) The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14:1907–1917CrossRefPubMedPubMedCentralGoogle Scholar
  73. Soper T, Mandin P, Majdalani N et al (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci USA 107:2–7CrossRefGoogle Scholar
  74. Soper TJ, Doxzen K, Woodson SA (2011) Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA 17:1544–1550CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sugimoto Y, Vigilante A, Darbo E et al (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519:491–494CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663CrossRefPubMedGoogle Scholar
  77. Team R (2013) R Development Core Team. R: a language and environment for statistical computing 55:275–286Google Scholar
  78. Tomasini A, Moreau K, Chicher J et al (2017) The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Nucleic Acids Res 45:6746–6760CrossRefPubMedPubMedCentralGoogle Scholar
  79. Travis AJ, Moody J, Helwak A et al (2014) Hyb: a bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. Methods 65:263–273CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tree JJ, Granneman S, McAteer SP et al (2014) Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 55:199–213CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vidal M, Cusick MEE, Barabási A-L (2011) Interactome networks and human disease. Cell 144:986–998CrossRefPubMedPubMedCentralGoogle Scholar
  82. Waters SA, McAteer SP, Kudla G et al (2017) Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36:374–387CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wright PR, Richter AS, Papenfort K et al (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci USA 110:E3487–E3496CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yu H, Braun P, Yildirim MA et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biotechnology and Biomolecular SciencesUniversity of New South Wales, Sydney, New South WalesAustralia

Personalised recommendations