Atomic and Magnetic Force Studies of Co Thin Films and Nanoparticles: Understanding the Surface Correlation Using Fractal Studies

  • Indra SulaniaEmail author
  • R. P. Yadav
  • Ranjeet Kumar Karn


This chapter deals with the basic concepts of scanning probe microscopy, especially atomic and magnetic force microscopy techniques. The basic working principles are discussed along with highlighting the main parts of the instrument. In the experimental part, we have discussed the Co films of thickness ∼4 nm deposited by electron beam evaporation technique on silica ∼5-nm-thick layer deposited on silicon (100) substrate, viz., Co (4 nm)/Silica (5 nm)/Si. The films were irradiated using 120 MeV Ag ions at different ion fluences. We have discussed surface topography and other features before and after irradiation on thin films in terms of domain size, Bloch walls, and uniformity of the magnetic signals obtained from MFM studies. It provides us an idea about the utilization of magnetic force microscopy to study the magnetic properties of the films using MFM. Further, we have put few examples of the images obtained from SPMs in different modes to show the versatility of the instrument. Finally, we have discussed a set of useful statistical functions to characterize the surface features, namely, height fluctuations in irradiated surfaces using AFM images.


Atomic force microscopy Topography Surface roughness Magnetic force microscopy Feedback mechanism Imaging Cantilevers Surface correlation 


  1. 1.
    Giessibl, F. J. (2003). Advances in atomic force microscopy. Reviews of Modern Physics, 75, 949.CrossRefGoogle Scholar
  2. 2.
    Julian Chen, C. (2007). Introduction to scanning tunneling microscopy (2nd edn). Oxford University Press. Oxford Scholarship OnlineGoogle Scholar
  3. 3.
    Wiesendanger, R. (1994). Scanning probe microscopy and spectroscopy: Methods and applications. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  4. 4.
    Scanning tunneling microscopy. Perspectives in condensed matter physics (a critical reprint series) (Vol. 6). Dordrecht: Springer.Google Scholar
  5. 5.
    Binning G, ROhrer H. (1986) Scanning Tunneling Microscopy, IBM Journal of Research and Development 30(4), 355–369.Google Scholar
  6. 6.
  7. 7.
  8. 8.
    A. Yacoot and L. Koenders (2008), Aspects of scanning force microscope probes and their effects on dimensional measurement, J. Phys. D: Appl. Phys., 41, 103001.CrossRefGoogle Scholar
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    New, R., Martin, Y., & Wickramasinghe H. K. (1987). Magnetic imaging by "force microscopy" with 1000 Angstrom resolution. Applied Physics Letters, 50, 1455(1987). Y.CrossRefGoogle Scholar
  13. 13.
    Zhenghua, L., Xiang, L., Dong, D., Dongping, L., Saito, H., & Ishio, S. (2014). AC driven magnetic domain quantification with 5 nm resolution Scientific Reports, 4, 5594.Google Scholar
  14. 14.
    Gomez, R. D., et al. (1998). Quantification of magnetic force microscopy images using combined electrostatic and magnetostatic imaging Journal of Applied Physics, 83, 6226.CrossRefGoogle Scholar
  15. 15.
    Gomez, R. D., et al. (1996). Switching characteristics of submicron cobalt islands Journal of Applied Physics, 80(1), 342.CrossRefGoogle Scholar
  16. 16.
    Landis, S., et al. (1999). Domain structure of magnetic layers deposited on patterned silicon Applied Physics Letters, 75, 2473.CrossRefGoogle Scholar
  17. 17.
    Kumar, A., Avasthi, D. K., Pivin, J. C., Papaléo, R. M., Tripathi, A., Singh, F., & Sulania, I. (2007). Magnetic Force Microscopy of Nano-Size Magnetic Domain Ordering in Heavy Ion Irradiated Fullerene Films Journal of Nanoscience and Nanotechnology, 7(6), 2201.CrossRefGoogle Scholar
  18. 18.
    Hartmann, U. (1999). MAGNETIC FORCE MICROSCOPY Annual Review of Materials Research, 29, 53–87.Google Scholar
  19. 19.
    Porthun, S., Abelmann, L., & Lodder, C. (1998). Magnetic force microscopy of thin film media for high density magnetic recording Journal Magnetism Magnetic Materials, 182, 238–273.CrossRefGoogle Scholar
  20. 20.
    Sulania, I., Agarwal, D. C., Kumar, M., Kumar, S., & Kumar, P. (2016). Topography evolution of 500 keV Ar4+ ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws Physical Chemistry Chemical Physics, 18(30), 20363–20370.CrossRefGoogle Scholar
  21. 21.
    Sulania, I., Agarwal, D., Husain, M., & Avasthi, D. K. (2016). Investigations of ripple pattern formation on Germanium surfaces using 100-keV Ar+ ions Nanoscale Research Letters, 10(88), 1–8.Google Scholar
  22. 22.
    Sulania, I., Agarwal, D., Kumar, M., & Avasthi, M. (2013). Low energy bombardment induced formation of Ge nanoparticles Advanced Materials Letters, 4(6), 402.CrossRefGoogle Scholar
  23. 23.
    Sulania, I., Tripathi, A., Kabiraj, D., Varma, S., & Avasthi, D. K. (2008). keV Ion-Induced Effective Surface Modifications on InP Journal Nanoscience Nanotechnology, 8(8), 4163–4167.CrossRefGoogle Scholar
  24. 24.
    Mishra, Y. K., Kabiraj, D., Sulania, I., Pivin, J. C., & Avasthi, D. K. (2007). Synthesis and Characterization of Gold Nanorings Journal Nanoscience Nanotechnology, 7(6), 1878–1881.CrossRefGoogle Scholar
  25. 25.
    Chang, K.-C., Chiang, Y.-W., Yang, C.-H., Liou, J.-W., & Chi, T. (2012). Atomic force microscopy in biology and biomedicine. Medical Journal, 24, 162–169.Google Scholar
  26. 26.
    Ushiki, T., & Hoshi, O. (2008). Atomic force microscopy for imaging human metaphase chromosomes. Chromosome Research, 16, 383–396.CrossRefGoogle Scholar
  27. 27.
    Yadav, R. P., Kumar, T., Mittal, A. K., Dwivedi, S., & Kanjilal, D. (2015). Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences Applied Surface Science, 347, 706–712.CrossRefGoogle Scholar
  28. 28.
    Yadav, R. P., Dwivedi, S., Mittal, A. K., Kumar, M., & Pandey, A. C. (2012). Fractal and multifractal analysis of LiF thin film surface Applied Surface Science, 261, 547–553.CrossRefGoogle Scholar
  29. 29.
    Yadav, R. P., Kumar, M., Mittal, A. K., & Pandey, A. C. (2015). Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces Chaos, 25, 083115.CrossRefGoogle Scholar
  30. 30.
    Pelliccione, M., & Lu, T. M. (2008). Evolution of thin film morphology: Modeling and simulations. Berlin: Springer.Google Scholar
  31. 31.
    Yadav, R. P., Kumar, M., Mittal, A. K., Dwivedi, S., & Pandey, A. C. (2014). On the scaling law analysis of nanodimensional LiF thin film surfaces Materials Letters, 126, 123–125.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Indra Sulania
    • 1
    Email author
  • R. P. Yadav
    • 2
  • Ranjeet Kumar Karn
    • 3
  1. 1.Inter University Accelerator CentreNew DelhiIndia
  2. 2.Department of PhysicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  3. 3.University Department of PhysicsKolhan UniversityChaibasaIndia

Personalised recommendations